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Abstract

Many engineering design applications require geometric modeling and mechanical
simulation of thin flexible structures, such as those found in the automotive and
aerospace industries. Traditionally, geometric modeling, mechanical simulation, and
engineering design are treated as separate modules requiring different methods and
representations. Due to the incompatibility of the involved representations the tran-
sition from geometric modeling to mechanical simulation, as well as in the opposite
direction, requires substantial effort. However, for engineering design purposes effi-
cient transition between geometric modeling and mechanical simulation is essential.
We propose the use of subdivision surfaces as a common foundation for modeling,
simulation, and design in a unified framework. Subdivision surfaces provide a flex-
ible and efficient tool for arbitrary topology free-form surface modeling, avoiding
many of the problems inherent in traditional spline patch based approaches. The
underlying basis functions are also ideally suited for a finite-element treatment of
the so-called thin shell equations, which describe the mechanical behavior of the
modeled structures. The resulting solvers are highly scalable, providing an efficient
computational foundation for design exploration and optimization. We demonstrate
our claims with several design examples, showing the versatility and high accuracy
of the proposed method.
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1 Introduction

Current engineering design practice in industry employs a sequence of tools
which are generally not well matched to each other. For example, the output
of a computer aided geometric design (CAGD) system is typically not suitable
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as direct input for a finite-element modeler. This is usually addressed through
intermediate tools such as mesh generators. Unfortunately, these are notori-
ously lacking in robustness. Even once a geometric model has been successfully
meshed, the output of a finite-element simulation cannot be directly applied
to the original geometric model, since there is no straightforward mapping
back to the original design degrees of freedom. Additionally there is a need for
a trade-off between the speed of analysis and the fidelity of the results. In the
early stages of design, quick results are necessary, but approximate results are
acceptable. In the later stages, highly precise results are required, and longer
computation times are tolerated. Worse, different underlying models are re-
quired for each level of refinement. These difficulties make the design process
cumbersome and inhibit rapid iteration over design alternatives (Figure 1).
Many of these difficulties can be greatly reduced in a unified representation
paradigm, e.g., an environment in which the geometric model uses the same
underlying representation as the appropriate finite-element simulation. The
principal advantage of such a unified representation paradigm is the simple
and rapid data transfer between the geometric design and finite-element anal-
ysis tools. No cumbersome remodeling of already generated geometric models
for purposes of finite-element simulation is required. As a result the investi-
gation of different design alternatives, e.g., for design space exploration, will
be substantially simplified. In applications this will lead to faster product de-
velopment cycles through the tight combination of the design and analysis
steps. Historically modeling and simulation tools were developed in different
communities with limited interactions. To our knowledge few attempts have
been made in the past to unify geometric modeling and simulation based on
a common representation paradigm (14; 17). Our contribution in this paper
is to demonstrate a computationally simple and theoretically well-justified
framework for an integrated treatment of free-form geometric modeling and
finite-element analysis of thin-shells for purposes of engineering design.
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Fig. 1. Iteration cycle in the product development.
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Thin flexible structures (plates and shells) appear in many areas of applied
engineering design, e.g., in the automobile and aerospace industries. As the
underlying representation for such structures we have chosen subdivision sur-
faces. It is well known that they have many practical advantages for free-form
geometric modeling, in particular for shapes of arbitrary topology. With the
recent development of subdivision algorithms supporting such important mod-
eling operations as trimming, boundary interpolation, and description of small
features (4; 16; 19), subdivision surfaces are well positioned to become a fun-
damental modeling primitive for CAGD applications (2).

Additionally, it has recently been demonstrated (8; 7) that the basis functions
induced by subdivision, when used as shape functions in the finite-element
method, have significant advantages over the previous state of the art in the
numerical simulation of thin shells. Similar to a thin-plate, the deformation
of curved shells is described by partial differential equations with derivatives
up to order four, requiring shape functions with square integrable curvatures
for finite-element treatments. The choice of subdivision shape functions can
be contrasted with more traditional approaches for the construction of shape
functions, which are typically based on Hermite interpolation. It is well known
that this leads to fifth order polynomials over triangles. Higher order shape
functions, however, are not suitable for practical problems with such features
as reentrant corners, jumps in the material properties, or point loads, which
exhibit singularities in the exact solution. Subdivision surfaces satisfy the nec-
essary analytic requirements (27) while being parameterized strictly in terms
of displacements only and circumvent the usual difficulties with traditional
finite-element treatments.

The many advantages of the subdivision method for geometric modeling and
for mechanical simulation makes it a method of choice for integrated design
and simulation. The need to convert an existing CAD model to a finite-element
mesh and the difficulty of doing so robustly is entirely circumvented. Since the
finite-element solver uses the same degrees of freedom as the free-form geo-
metric modeling system, optimization of the geometry based on the results of
mechanics simulations is immediate. The latter in particular greatly facilitates
the iterative process of engineering design.

1.1 Overview

Section 2 serves mainly to recall some facts about subdivision and to estab-
lish notation. While we restrict our framework to Loop surfaces (20) in the
present paper we hasten to point out that the basic algorithms are equally
applicable to other subdivision schemes, in particular the scheme of Catmull
and Clark (6). Section 3 recalls the basic formulation of the equations govern-
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ing the mechanical behavior of thin flexible structures. Detailed derivations,
convergence studies, and more sophisticated material models are described
elsewhere (8; 7). Finally, Section 4 discusses a basic framework for design
space exploration and presents an integrated framework for modeling, simu-
lation and design with subdivision surfaces. Two engineering design examples
(square plate and car hood) are used to demonstrate the proposed approach.

2 Subdivision Surfaces

Subdivision schemes construct smooth surfaces through a limiting procedure
of repeated refinement starting from an initial control mesh (Figure 2). They
were first proposed in 1978 by Catmull and Clark (6) and Doo and Sabin (9)
to address some of the shortcomings of traditional spline patches when mod-
eling arbitrary topology surfaces. Since then many other schemes have been
proposed and studied (for an overview the interested reader is referred to (37)
and the references therein). For purposes of free-form geometric modeling with
concurrent thin-shell finite-element analysis, subdivision methods which result
in limit surfaces whose curvature tensor is square integrable are especially ap-
pealing.

For our purposes we have chosen the triangle-based, primal, approximating
scheme of Loop (20), which generalizes the three direction quartic box-spline
to arbitrary topology control meshes. For almost all initial control meshes,
the resulting surfaces are C2 except at irregular vertices where the surfaces
are C1 only. In the case of triangle based subdivision all interior vertices of
valence other than 6 as well as boundary vertices of valence other than 4 are
referred to as irregular. While the curvatures at irregular vertices diverges,
the curvatures are square integrable (27) as required for thin-shell analysis. A
detailed description of the Loop subdivision rules including the treatment of
boundaries, convex and concave corners, as well as tangent plane boundary
conditions can be found in (4).

For later use we fix notation as follows. Each vertex of the control mesh has
associated with it a point position in three space, sometimes also referred to
as “nodal position” (in analogy to the term traditionally used in the finite-
element literature). Vertices are indexed by some integer set l = {0, . . . , L}
and the associated nodal position is xl.
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Control mesh First subdivided mesh

Limit surface

Fig. 2. Subdivision describes a smooth surface as the limit of a sequence of refined
polyhedra.

2.1 Limit Surface Evaluation

In order to apply the finite-element method to subdivision surfaces we need
to have a proper parameterization of the surface in terms of elementary do-
main elements. The natural choice are the triangles of the control mesh, each
of which can be treated as a subset of the domain and brought into corre-
spondence with a “master element” (Figure 3). Additionally, efficient evalua-
tion routines for limit surface quantities such as first and second derivatives
need to be available. General methods for this task were first described by
Stam (32; 31). However, we are interested only in specific parameter values,
namely those needed for quadrature evaluation of stiffness integrals arising
from the computation of the mechanical response of the surface. For this the
fully general method is not needed. In particular one-point, barycenter based
quadratures are sufficient (8).

A convenient local parameterization of the limit surface may be obtained as
follows. For each triangle in the control mesh we choose (θ1, θ2) as two of its
barycentric coordinates within their natural range:

T = {(θ1, θ2), s. t. θα ∈ [0, 1], 0 ≤ θ1 + θ2 ≤ 1}
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Fig. 3. Master element (left) and the control mesh (right).

The triangle T in the (θ1, θ2)-plane may be regarded as a master or standard
element domain. It should be emphasized that this parameterization is defined
locally for each element in the mesh. The entire discussion of parameterization
and function evaluation may therefore be couched in local terms.

In the regular setting the scheme of Loop leads to quartic box-splines. There-
fore, the local parameterization of the limit surface may be expressed in terms
of box-spline shape functions, with the result:

x(θ1, θ2) =
12∑
l=1

N l(θ1, θ2)xl (1)

where now the labels l refer to the local numbering of the nodes (all nodes
shown in Figure 3). The precise form of the shape functions N l(θ1, θ2) is given
in the companion paper (8). The embedding (eq. 1) may thus be regarded as
a conventional isoparametric mapping from the standard domain T onto the
limit surface Ω, with (θ1, θ2) playing the role of natural coordinates.

For function evaluation on irregular patches, i.e., those with one or more irreg-
ular vertices incident, the mesh has to be subdivided until the parameter value
of interest is interior to a regular patch. At that point the regular box spline
parameterization applies once again. It should be noted that the refinement
is performed for parameter evaluation only. For simplicity we assume that ir-
regular patches have one irregular vertex only. This restriction can always be
met for arbitrary initial meshes through one step of subdivision, which has
the effect of separating all irregular vertices. As shown in Figure 4, after one
subdivision step the triangles marked one, two, and three are regular patches.
The action of the subdivision operator for this entire neighborhood can be
described by a matrix:

X1 = AX0
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Fig. 4. Refinement near an irregular vertex.

The matrix A has dimension (k+12, k+6) and its entries can be derived from
the subdivision rules. For the proposed shell element with one point quadrature
at the barycenter of the master element, a single subdivision step is sufficient,
since the sampling point (center of the initial patch) lies in sub-patch 2. We
define 12 selection vectors P l, l = 1, . . . , 12 of dimension (k+12) which extract
the 12 box-spline control points for sub-patch 2 from the k + 12 points of the
refined mesh. The entries of P l are zero and one depending on the indices of the
initial and refined meshes. To evaluate the function values in the three triangles
with the box-spline shape functions N l, a coordinate transformation must
be performed. The relation between the coordinates (θ1, θ2) of the original
triangles and the coordinates (θ̃1, θ̃2) of the refined triangles can be established
from the refinement pattern in Figure 5. For the sub-patch 2 we have the
following relation:

Triangle 2: θ̃1 = 1− 2θ1 and θ̃2 = 1− 2θ2

The function values and derivatives for sub-patch 2 can now be evaluated

3

2

1

1.0

1.
0

Fig. 5. Refinement of the master triangle.
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using the interpolation rule:

x(θ1, θ2) =
12∑
l=1

N l(θ̃1, θ̃2)P lAX0 (2)

Derivatives, required for instance for the computation of the potential energy,
follow by direct differentiation of the interpolation rule (eq. 2).

3 Review of Thin-Shell Equations

The mechanical response of a subdivision surface with an attached thickness
property can be computed with the classical Kirchhoff-Love shell theory. In
this section we briefly summarize the resulting field equations. A detailed
presentation of classical shell theories can be found in (23). The final result
of our derivation will be couched in terms of constrained energy minimization
where the internal energy of the shell depends on invariant quantities of the
surface such as the metric and curvature tensor.

3.1 Related Methods in Geometric Modeling

Before going into the details of the description of the mechanical behavior of
shells, it is useful to briefly contrast our approach with other energy mini-
mization methods. These often appear in variational modeling. For example,
Halstead, et al. (12) described an algorithm for fair interpolation of a given
set of points with a Catmull-Clark surface. To constrain the solution space
they search for a parameterized surface x which simultaneously interpolates
the given constraints and minimizes an energy functional Φ over the domain
Ω based on a weighted average of squared first and second derivatives:

Φ[x] = α
∫

Ω

(x,1)
2 + (x,2)

2dΩ+ β
∫

Ω

(x,11)
2 + 2(x,12)

2 + (x,22)
2dΩ

where α and β are some prescribed constants and a comma is used to denote
partial differentiation. These terms are sometimes referred to as stretching and
bending energies. While such formulations are typically derived from a thin-
plate ansatz they cannot describe the mechanical behavior of a shell correctly
since the result of the computation depends on the particular parameterization
chosen. In fact using the standard parameterization leads to infinite bending
energies (12) and either zero or infinite stretching energies near irregular ver-
tices. Such methods can nonetheless be useful for scattered data interpolation
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Fig. 6. Shell geometry in the reference (left) and the deformed (right) configurations.

after suitable modifications near the extraordinary vertices (21) or elimina-
tion of the infinite energy modes (12). To accurately and consistently describe
the mechanical behavior of shells a formulation in terms of intrinsic surface
properties is required.

3.2 Kinematics of Deformation

We begin by considering a shell whose undeformed middle surface is char-
acterized by a subdivision surface of domain Ω and boundary Γ = ∂Ω. The
shell deforms under the action of applied loads and adopts a deformed mid-
dle surface characterized by a surface of domain Ω and boundary Γ = ∂Ω.
The position vectors r and r of a material point in the reference and de-
formed configurations of the shell may be parameterized in terms of a system
of curvilinear coordinates {θ1, θ2, θ3} as:

r(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ
1, θ2) − t

2
≤ θ3 ≤ t

2

and

r(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ
1, θ2) − t

2
≤ θ3 ≤ t

2

The functions x(θ1, θ2) and x(θ1, θ2) furnish a parametric representation of
the middle surface of the shell in the reference and deformed configurations,
respectively, while t gives the thickness of the surface (Fig. 6). The correspond-
ing surface basis vectors are:

aα = x,α and aα = x,α
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where the comma is used to denote partial differentiation with respect to θα

and the Greek indices take the value 1 and 2. The shell directors a3 and a3 are
the unit normal vectors to the undeformed and deformed shell middle surfaces,
respectively. The covariant components of the surface metric tensors in turn
follow as:

aαβ = aα · aβ and aαβ = aα · aβ

whereas the covariant components of the curvature tensors are given by:

καβ = −aα,β · a3 and καβ = −aα,β · a3

We define the following two strain measures for describing the change in the
geometry between reference and the deformed geometry:

ααβ =
1

2
(aαβ − aαβ) and βαβ = καβ − καβ

In particular, the in-plane components ααβ , or membrane strains, measure the
straining of the surface and the components βαβ, or bending strains, measure
the bending or change in curvature of the shell. The linearized membrane and
bending strains are of the form:

ααβ =
1

2
(aα · u,β + u,α · aβ) (3)

and

βαβ = −u,αβ · a3 +
1√
a
[u,1 ·(aα,β × a2) + u,2 ·(a1 × aα,β)]

+
a3 · aα,β√

a
[u,1 ·(a2 × a3) + u,2 ·(a3 × a1)] (4)

It is clear from these expressions that the middle surface displacement field
u = x−x furnishes a complete description of the shell deformation and may
therefore be regarded as the primary unknown of the analysis.

3.3 Weak Form of Equilibrium and Discretization

The potential energy of the shell has the form:

Φ[u] =
∫

Ω

W (u) dΩ+ Φext = Φint + Φext
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where Φint is the elastic energy and Φext is the potential of the applied loads.
For simplicity, we shall assume throughout that the shell is linearly elastic
with strain energy density per unit area of the form:

W (u) =
1

2

Et

1− ν2
Hαβγδααβαγδ +

1

2

Et3

12(1− ν2)
Hαβγδβαββγδ (5)

whereby the Einstein summation convention applies, ν denotes Poisson’s ratio
and E denotes Young’s modulus (10). The fourth order constitutive tensor
Hαβγδ is given by

Hαβγδ = ν aαβaγδ +
1

2
(1− ν) (aαγaβδ + aαδaβγ) (6)

with the contravariant components of the surface metric tensor aαβ . In (eq. 5),
the first term is the membrane strain energy density and the second term is
the bending strain energy density.

The stable equilibrium configurations of the shell now follow from the principle
of minimum potential energy. The Euler-Lagrange equations corresponding to
the minimum principle may be expressed in weak form as:

〈DΦ[u], v〉 = 〈DΦint[u], v〉+ 〈DΦext[u], v〉 = 0 (7)

where v is the trial displacement field. In particular, the internal energy has
the form:

〈DΦint[u], v〉=
∫

Ω

[
Et

1− ν2
Hαβγδααβ(u)αγδ(v) +

Et3

12(1− ν2)
Hαβγδβαβ(u)βγδ(v)]dΩ

It is clear that the displacements u and the trial functions v must necessarily
have square integrable first and second derivatives. Under suitable technical
restrictions on the domain Ω and the applied loads, it therefore follows that
the displacements and the trial functions have to be in the Sobolev space
H2(Ω, R3). In particular, an acceptable finite-element interpolation method
must guarantee that all interpolants belong to this space. Next we proceed to
partition the domain Ω of the shell middle surface into a set of elements as
induced by the original control mesh. The collection of element domains in
the mesh is {Ωj, j = 1, . . . , n}, where Ωj denotes the domain of element j
and n is the total number of elements in the domain. The control mesh may
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be taken as a basis for introducing interpolants of the general form:

xh(θ
1, θ2) =

L∑
l=1

N l(θ1, θ2)xl and uh(θ
1, θ2) =

L∑
l=1

N l(θ1, θ2)ul (8)

where {N l, l = 1, . . . , L} are the shape functions, {xl, l = 1, . . . , L} are
the coordinate vectors of the control points in the reference configuration,
{ul, l = 1, . . . , L} are the corresponding nodal displacement vectors, and L
is the number of nodes in the mesh. Furthermore, the displacement interpola-
tion (eq. 8) inserted in (eqs. 3 and 4) gives the finite-element membrane and
bending strains in the form:

αh(θ
1, θ2) =

L∑
l=1

M l(θ1, θ2)ul and βh(θ
1, θ2) =

L∑
l=1

Bl(θ1, θ2)ul (9)

The exact form of the matrices M l and Bl can be found in the companion
paper (8). Introducing the strain interpolations (eq. 9) into the weak form
(eq. 7) and subsequent numerical integration of the integrals leads to the
discrete equilibrium equation:

L∑
m=1

Klmum = f l (10)

where K lm is the stiffness matrix and f l is a force vector.

3.3.1 Remarks

• Theoretical considerations and numerical tests show that a one-point quadra-
ture rule leads to a discrete stiffness matrix with full rank, and optimal
convergence of the method. The integration point is at the barycenter of
the elements. Sufficient conditions for the quadrature rule to preserve the
order of convergence of the finite-element method may be found in (33).

• The derived strain-displacement relations (eqs. 9) and the introduced mate-
rial model (eq. 6) are linear. The presented theory can thus only be applied
in the small displacement and strain regime.

• The extension of the methods to the large deformation case can be found
in the companion paper (7).

• The resulting algebraic equation system (eq. 10) is, as usual for finite-
element methods, sparse. We solve it with a standard direct method spe-
cially tailored for sparse matrices.

• A classical approach to avoid the use of smooth shape functions in finite-
element computations is based on the theory of thick-shells with shear defor-
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mation (1). The related finite-element implementations require only piece-
wise continuous shape functions, but lead to problems such as shear locking
for thin-shells – especially in the presence of severe element distortion.

4 Design Space Exploration and Multi-Attribute Decision-Making

Engineering design requires a range of analysis methods, such as the subdivi-
sion method for thin-shell structural analysis, in order to assess one or more
aspects of performance for any particular design candidate. However, several
additional elements must also be available to the design engineer to make
effective use of such analysis methods. The designer needs:

• some approach to determine or propose which candidates to analyze,
• some method for trading-off cost and fidelity of analysis, and
• a method for trading-off, or aggregating, multiple, usually competing as-
pects of performance (e.g., mass and stiffness).

The subdivision method for thin-shell structural analysis provides a powerful
technique for trading-off cost and fidelity of analysis, by:

• permitting the use of a coarse mesh early in the design procedure when a
large number of design alternatives are being considered, and the resources
that can be applied to the (preliminary) analysis of any one alternative are
small, and

• increasing the fidelity of the analysis, by subdivision of the mesh, as the
design process proceeds and the number of design alternatives being con-
sidered is reduced, and the resources that can be applied to the analysis of
any one alternative grow.

This is particularly beneficial, as the underlying model of the shell does not
need to be recreated as the design proceeds; only the degree of subdivision
applied to the original model needs to be increased.

The multi-attribute character makes engineering design more than a simple
optimization problem. In multi-attribute problems, trade-offs among criteria
can play a determining role, and the designer is frequently interested in a
Pareto frontier of points (15; 34) rather than a single optimum.

A Pareto point is a point in the set of possible designs that matches or exceeds
the performance of any other possible design point on at least one attribute;
if one point is better than a second on all attributes, the second point is
dominated and cannot be a Pareto point. The Pareto frontier is the set of
Pareto points. A set of Pareto points comprising a Pareto frontier in a discrete
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Fig. 7. A Set of Pareto Points.

2-dimensional problem is shown in Figure 7.

The choice of a trade-off strategy (or aggregation) determines which of the un-
dominated (Pareto) points is selected as best satisfying the multiple criteria.
Choosing an appropriate trade-off strategy is a crucial part of the engineering
design process, principally because it can dramatically affect the result (25).
A family of functions, appropriate for engineering design, to perform this ag-
gregation is introduced in (29).

It can be highly beneficial for the engineer to consider sets of designs (3). As
the design process proceeds, the size of the set of designs under consideration
is reduced, and the fidelity of the analysis is increased. Set-based methods
have been shown to facilitate design concurrency (35).

The design engineer’s task involves proposing alternative solutions, coupled
with an iterative exploration of the design space. The dimension of a typical
design space may be in the tens or hundreds. Unless the measure of perfor-
mance is an analytic function of the design variables (an unusual case), the
engineer must construct the performance function through pointwise evalua-
tion of the design space. Even for rapid performance calculations, “exhaustive”
exploration of a design space (even to a modest resolution in each dimension)
is prohibitively expensive; for calculations such as finite-element analysis that
may take many minutes of cpu time, even a rudimentary exploration of the
design space becomes impossible.

Methods for coping with this computational difficulty at any one level of design
resolution include polynomial and other approximations of the performance
function (Design of Experiments (22), Kriging (30), MARS (13), Response
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Surface methods, local approximation of partial derivatives (sensitivity anal-
ysis (18)), directed pointwise search (classical optimization (26)) and ad hoc
selection guided by experience and intuition.

For multi-attribute problems, decision analysis methods are used to assess the
performance of sets of designs (the Method of Imprecision (3; 36)), and to
trade-off multiple competing aspects of the design (utility theory (15), matrix
methods, and aggregation methods (25; 29)).

Finally, engineers routinely use models of differing resolution at different stages
of a design process, for example, progressing from linear beam calculations at
an early stage of design to a finely-meshed non-linear finite-element analysis
when the geometry of the part is more precisely described. Such models can-
not be described as multi-resolution, however, for the engineer must employ
different models to change resolutions.

The subdivision method for thin-shell structural analysis provides a true, nat-
ural, multi-resolution analysis, where one model supports many different res-
olutions. As with other modeling methods, increased fidelity comes at an in-
creased computational cost. However, here the designer specifies a single pa-
rameter (the level of subdivision) to choose faster analyses in the early stages
and more accurate ones later, rather than building a new model for each de-
sired level of resolution of the same design.

5 Examples

We present two design examples to illustrate the framework presented above
for integrated modeling, finite-element analysis and design of thin-shells based
on subdivision surfaces. In the examples, the initial design is improved with
respect to various objective functions. For optimization we employ a simple
pattern search algorithm. The search is based only on the value of the objective
function and does not require function derivatives. If derivatives (sensitivities)
are available more sophisticated optimization algorithms can be utilized (see,
e.g., (11; 24; 5) among many others).

5.1 Square Plate

The first example is the design of a uniformly loaded roof over a square shaped
area (Figure 8). The roof is supported at the four corners. The design objective
is to maximize the stiffness (or to minimize the compliance) of the structure,
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Fig. 8. Definition of the plate test problem and a typical mesh used in the calcula-
tions.

which can be expressed more formally as:

min
s

L∑
l=1

L∑
m=1

ulK
lmum (11)

where s is the set of design variables, L is the number of nodes, ul is the
vector of vertex displacements, and Klm is the stiffness matrix. Although not
explicitly indicated in (eq. 11), the stiffness matrix and the displacements de-
pend on the design variables. Furthermore, the range of the design variables
s is provided by the user. Within the subdivision framework the vertices of
the control mesh are the design variables. For the plate example we chose as
design variables the out of plane components of the control vertice positions
in Figure 8. In order to compute the stiffness in (eq. 11) during the design
space exploration we utilize the finite-element method based on the shape
functions induced by subdivision as described earlier. However, the resolution
of the control mesh is not sufficient for finite-element analysis. The control
mesh is subdivided twice prior to the computation (Figure 9, left). Using the
finite-element mesh vertices directly as design variables would lead to too
many unknowns during the optimization procedure. In addition it leads to
oscillations in the optimized shape so that the results of the optimization are
useless (11). Consequently the parameters of the CAD model are chosen as
the optimization variables. In a traditional framework this requires the gener-
ation of a finite-element mesh separate from the original CAD model, bringing
with it the computational disadvantage of keeping two representations. The
subdivision based approach is computationally efficient and representation-
ally unified way to use the subdivision control mesh to parameterize both the
geometry and the finite-element model.
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Finite-element mesh Optimum shape

Fig. 9. Square plate example.

The optimized roof structure is shown in Figure 9. For thin-shells the response
to membrane strain is much stiffer than response to bending strain. Accord-
ingly, the stiffness of the initial flat plate with bending energy only can be
increased by changing the initial geometry of the shell as shown in Figure 9.
Note the small features close to the free boundaries of the optimized shape.
Through the optimization process the objective function in (eq. 11) could be
minimized from 22541.32 to 55.39. This improvement demonstrates the well
known strong influence of the curvature on structural stiffness.

5.2 VW Hood

As a second illustration of the value of the multiresolution simulation method
using subdivision surfaces, consider the circa-1960 VW Beetle hood shown in
Figure 10. The engineering design problem for the VW hood is to select a
geometry of the hood to obtain superior performance in a number of aspects
of performance, both measured and unmeasured. Chief among these perfor-
mance concerns is a measure of torsional stiffness (the hood should not deform
unacceptably if lifted from a point off-center at the front), which will be com-
puted using the finite-element method based on the shape functions induced
by subdivision. In addition, the total weight and the storage volume under the
hood are calculated, and the styling, manufacturability, and usability of the
hood are taken into account.

The original surface model (Figure 10) has 63 control points. There are 28
reflected pairs, leaving 35 unique control points if symmetry is enforced. Of
those 35 points, 12 lie on the edge of the hood, and as the hood boundary is
presumed to be fixed, those 12 points are fixed as well. It would be possible
to treat the 23 remaining control points as design variables, and vary them
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Geometry :

maxx −min x = 40.79

max y −min y = 42.03

max z −min z = 26.36

Thickness = 0.12

Material :

Young’s modulus E = 12500

Poisson’s ratio ν = 0.290

Mass density ρ = 0.1

Fig. 10. Definition of the hood problem.

individually. In order to lessen deviations from the original styling (the hood
ought to look like a VW), these 23 control points are varied using four non-
dimensional geometric parameters: the swell of the hood (Figure 11, left), the
depth of the characteristic center crease (Figure 11, right), the swell of the
upper portion of each side of the hood (Figure 12, right), and the swell of
the lower portion of each side of the hood (Figure 12, left). At the reference
configuration all design variables have a value of one, and at zero all curves
flatten to straight lines.

As mentioned, the design problem for the VW hood is not one of simple
optimization. Since the finite-element mesh is easily modified, it is possible
to “optimize” the design variables for minimum weight (Figure 13, left), or
maximum stiffness (Figure 13, right). These “optima” may be undesirable for
other reasons such as styling or manufacturability; also, one may sacrifice too
much stiffness to achieve the lightest possible design, or vice versa. Using the
lowest resolution finite-element analysis and an iterative search process, an
approximate Pareto frontier on trade-offs between weight and stiffness can
be found. As shown in Figure 14, there are many Pareto points, many of
which significantly outperform the reference configuration in both weight and
stiffness. Acquisition of the approximate Pareto frontier is made possible by
use of the fastest (coarsest) analysis; when a smaller region of design space
is explored at the next design iteration, a finer, more accurate finite-element
analysis can be employed.

The search for desirable designs can be further hastened by the use of approxi-
mations (which were not used in this example), and by a priori analysis of the
trade-offs between performance measures. By determining trade-off strategies
and weights as described in (28), it is possible to search directly for a solution
to fulfill a desired level of trade-off and relative importance weighting among
the attributes. One such solution, representing a relatively non-compensating
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Center swell Crease

Fig. 11. VW hood variations.

Lower side swell Upper side swell

Fig. 12. VW hood variations.

Optimized with respect to weight Optimized with respect to stiffness

Fig. 13. Optimized VW hood.

trade-off (s = −10), is shown in Figure 15, which appears as a black triangle in
Figure 14. This particular solution is relatively insensitive to deviations from
equal importance weights for the two attributes, and does not differ much
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Fig. 14. VW hood: Pareto frontier

Fig. 15. VW hood: Trade-off.

from the minimum weight solution. As was shown in (28), every point on the
Pareto frontier is the optimum for some trade-off strategy and pair of weights,
so different decision analyses could lead to different solutions. In any case, the
amount of necessary computation is greatly reduced by choosing importance
weighting and a degree of compensation between attributes in advance (28).
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6 Summary and Conclusions

We have proposed subdivision surfaces as a common foundation for modeling,
simulation, and design in a unified framework. Subdivision surfaces provide
a flexible and efficient tool for arbitrary topology free-form surface modeling,
avoiding many of the problems inherent in traditional spline patch based ap-
proaches. In addition, the underlying basis functions are ideally suited to the
finite-element analysis of thin-shells. The resulting solvers are highly scalable,
providing an efficient computational foundation for design exploration and
optimization. In particular, the ability to represent smooth surfaces with a
relatively coarse control mesh greatly facilitates geometric optimization. The
examples of application presented here illustrate the versatility and effective-
ness of this paradigm.
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