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Abstract

We propose a robust computational method for the coupled simulation of a compress-
ible high-speed flow interacting with a highly flexible thin-shell structure. A standard Eu-
lerian finite volume formulation on a fixed Cartesian mesh is used for the fluid, and a La-
grangian formulation based on subdivision finite elements on an unstructured mesh is used
for the shell. The fluid-shell interface on the Cartesian mesh is tracked with level sets. The
conservation laws at the interface are enforced by applying proper interface boundary con-
ditions to the fluid and shell solvers at the beginning of each time step. The basic approach
furnishes a general algorithm for explicit loose coupling of Lagrangian shell solvers with
Cartesian grid-based Eulerian fluid solvers. The efficiency and robustness of the proposed
approach is demonstrated with an airbag deployment simulation.
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1 Introduction
A large class of fluid-shell interaction problems requires a combined Lagrangian/Eulerian de-
scription of the governing dynamics. It is well known that Lagrangian formulations are in-
adequate for describing high-speed flows with significant vorticity and/or with large boundary
deformations, since the computational mesh inevitably incurs deformation-induced distortions,
which breaks the numerical method. This problem can be alleviated by recourse to continuous
adaptive remeshing [23], but not cured in general, especially in three dimensions. Eulerian ap-
proaches with the field equations formulated in terms of spatial variables and fixed meshes are
better suited for most fluid flows. By contrast, large deformations of shells are more adequately
described in a Lagrangian framework. The principal advantage of the Lagrangian approach
for shells lies in its ability to naturally track the evolution of material properties associated
with the material points as well as in the treatment of boundary conditions at material surfaces
such as free boundaries or fluid-shell interfaces. In contrast to Eulerian approaches, boundary
conditions are enforced at material surfaces ab initio and require no special attention. For the
aforementioned reasons we use in this work an Eulerian finite volume formulation for the fluid
and a Lagrangian formulation based on subdivision finite elements for the shell.

A number of different basic strategies have been proposed for coupling the response of in-
teracting solids and fluids. In the conventional Arbitrary-Lagrangian-Eulerian (ALE) approach
[8, 28, 9, 25], the coupling of the fixed Eulerian and moving Lagrangian meshes is accomplished
through an intermediate region in which the conforming mesh moves with a prescribed velocity.
The specification of the mesh evolution in the transition region is crucial to the success of ALE
methods, which unfortunately requires some a priori knowledge of the solution. In particular,
for thin-shell structures with possibly very large deformations, the success of ALE methods is
not always assured. The ALE method also requires the application of time consuming mesh
updating techniques at each time step as the shell body undergoes large deformations.

Alternatively, interface capturing techniques for tracking moving interfaces in fluids do not
require the conformity of the meshes at the interface (see e.g. [13, 12, 30, 11, 21, 3], among
many others). In particular, sharp interface methods, such as the ghost fluid method [11] and
the immersed boundary technique [21], have also been applied to Lagrangian-Eulerian solid-
fluid coupling. In the ghost fluid method, the discontinuities in the flow field resulting from the
interface are directly embedded in the solution through appropriately populated ghost cells. In
contrast, the immersed boundary technique applies a set of singular forces to the flow equations
in order to approximate the discontinuous character of the flow close to the interface.

Our approach has its origin in the ghost fluid method [11, 12] and is an extension of the
Eulerian-Lagrangian coupling strategy for bulk solids with compressible energetic flows pre-
sented in references [2, 10, 17]. The dynamic deformations of the solid shell are formulated
within a large-deformation Lagrangian finite element framework, and an Eulerian finite volume
formulation is adopted for solving the compressible flow equations. The coupling between the
Eulerian fluid solver and the Lagrangian shell solver is accomplished with a technique based on
level sets. At each time step, the signed distance function (or level set) from the deformed shell
surface is computed on the Eulerian grid by a demonstrably optimal algorithm proposed by
Mauch [16]. The resulting implicit representation of the fluid-shell boundary in the deformed
configuration is used to enforce the conservation laws at the boundary between the fluid and the
solid.
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The Kirchhoff-Love type thin-shell model, used in this work, takes the membrane as well as
bending response of the surface into account and has been discretized with the subdivision finite
elements [5, 6, 7]. The underlying kinematic assumptions allow for arbitrary large displace-
ments as well as rotations of the shell. Using the subdivision shape functions, the displacement
field within one finite element is interpolated through the displacements of the vertices attached
to the element and the immediately adjacent vertices in the mesh. In the resulting discretization,
the nodal displacements of the subdivision finite elements constitute the only unknowns of the
shell problem. Importantly, in contrast to conventional shell elements with displacements and
rotations as degrees of freedom, the coupling of subdivision shell elements with solid, or as in
the present case fluid, volume elements does not lead to any ambiguities.

The outline of the paper is as follows. We first briefly describe the numerical formulations
used for the shell and the fluid. Subsequently, the fluid-shell coupling algorithm is described in
full detail. Finally, we present an example of application of the overall numerical method to the
simulation of airbag deployment. This example demonstrates the feasibility and robustness of
the proposed computational strategy in capturing the intricate features of the interaction between
the flow and the shell.

2 Lagrangian Thin-Shell Solver
In the following, we give a brief summary of the shell model adopted and its discretization
with subdivision finite elements. A detailed presentation of the used model and discretization
technique can be found in references [5, 6]. A class of finite-deformation Kirchhoff-Love shell
theories may be obtained from the kinematic ansatz:

ϕ(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ
1, θ2) with − t

2
≤ θ3 ≤ t

2

ϕ(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ
1, θ2) with − t

2
≤ θ3 ≤ t

2

where ϕ(θ1, θ2, θ3) is the position vector of a material point associated with the convective coor-
dinates {θ1, θ2, θ3}within the shell body in its undeformed configuration. Similarly, ϕ(θ1, θ2, θ3)
is the position vector with respect to the deformed configuration of the shell. The functions x
and x furnish a parametric representation of the undeformed and deformed shell middle sur-
faces, respectively, and the pair {θ1, θ2} defines a system of surface curvilinear coordinates.
The thickness of the undeformed shell is t and the parameter θ3 determines the position of a
material point on the normal (director) to the undeformed middle surface. The unit normals to
the undeformed and deformed shell middle surface are:

a3 =
x,1 × x,2

j
a3 =

x,1 × x,2

j
(1)

Here, the surface jacobian is defined with j = |x,1 × x,2|, and the comma is used to denote
partial differentiation. With the aid of these kinematic assumptions, the deformation gradient
F for the shell body may be expressed in the form [15]:

F =
∂ϕ

∂ϕ
=

∂ϕ

∂θi
⊗ ∂θi

∂ϕ
(2)
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In this equation, the summation convention is assumed to be in force.
The potential energy of the shell body takes the form:

Π[ϕ] =

∫
Ω

∫ + t
2

− t
2

W (F ) µ dθ3dΩ + Πext = Πint + Πext (3)

where, for an hyperelastic material, W is the strain-energy density per unit undeformed volume,
Πext is the potential of the externally applied forces, and µ accounts for the curvature of the shell
in the computation of the volume element [5]. The Kirchhoff-Love energy functional (3) of the
thin-shell depends on the first and second order derivatives of the undeformed and deformed
middle surface, x and x. It is known from approximation theory that the convergence of the
related conforming finite-element procedure requires smooth, C1-continuous, shape functions.
On unstructured meshes, it is not possible to ensure strict slope continuity across finite elements
when the elements are endowed with purely local polynomial shape functions and the nodal
degrees of freedom consist of displacements and slopes only. Inclusion of higher derivatives
among the nodal variables lead to several well known difficulties, e.g. spurious oscillations in
the solution, non-physical higher order derivatives at the boundary vertices, or complex schemes
for nonsingular parameterization of the derivatives for large rotations. These difficulties can be
avoided by using nonlocal subdivision shape functions for the discretization of Kirchhoff-Love
type shell theories on unstructured meshes.

In the subdivision scheme based finite element method, the discretized shell surface is en-
tirely determined by the vertex positions of the triangulation, or control mesh. This results in
a particularly simple discretization of the undeformed and deformed shell surfaces within one
finite element [5]:

xh =
NP∑
I=1

N IxI xh =
NP∑
I=1

N IxI (4)

where xI and xI are the vertex coordinates, and NP is the number of the vertices in the one
neighborhood of the element, Figure 1. The subdivision method guarantees that all such element
patches exactly match at their boundaries at least in C1 sense. Introducing the discretization into
(3) and using the principle of minimum potential energy yields a discrete system of nonlinear
algebraic equations for the equilibrium configurations:

f int
h (xh) = f ext

h (xh) (5)

where f int
h (xh) is the internal force vector and f ext

h (xh) is the external force vector. If inertia ef-
fects are important, as in shell-fluid interaction problems, the Hamilton’s principle of stationary
action leads to a semi-discrete system of equations:

Mhẍh + f int
h (xh) = f ext

h (xh, t) (6)

where Mh is the mass matrix and ẍh is the acceleration vector. In our shell-fluid coupling
framework, the external force vector f ext

h (xh, t) includes, among others, the pressure loading
exerted from the fluid on to the shell (see section 4).
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Figure 1: Triangular element and its thirteen control nodes.

The semi-discrete equations of motion (6) are integrated in time with the explicit predictor-
corrector type Newmark algorithm:

xn+1 = xn + ∆tẋn +
1

2
∆t2ẍn (7)

ẋpre = (1− γNewmark)∆tẍn + ẋn (8)

in which γNewmark is the Newmark damping parameter (with 0.5 ≤ γNewmark ≤ 1) and ẋpre is
the predictor velocity vector. The final velocities follow from:

ẍn+1 = M−1(f ext
n − f int(xn+1)) (9)

ẋn+1 = ẋpre + γNewmark∆tẍn+1 (10)

3 Eulerian Compressible Fluid Solver
In this section, we summarize the details of the employed fluid solver for the inviscid compress-
ible flow. The set of governing Euler equations can be written as:

∂ρ

∂t
+∇ · (ρu) = 0

∂

∂t
(ρu) +∇ · (ρu⊗ u + Ip) = 0

∂

∂t
(ρE) +∇ ·

[
ρu

(
E +

p

ρ

)]
= 0

(11)

where ρ is the density, u is the velocity vector, p is the pressure, E = e + 1
2
‖u‖2 is the spe-

cific total energy, and e is the specific internal energy. The above equations are closed by an
additional equation of state. In the case of a perfect gas, the equation of state takes the form:

e =
p

(γ − 1)ρ
(12)
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in which γ is the constant specific heat ratio.
The Euler equations may be written in conservative form:

U ,t +∇ · F = 0 (13)

where U is the vector of unknowns and F is the flux vector. In our framework, the fluid
domain is discretized with a fixed Cartesian grid with a possibly non-uniform cell size. Using
a dimensional splitting approach, the three dimensional problem (13) is reduced to a sequence
of one-dimensional problems along each coordinate direction. The resulting one-dimensional
problems are discretized with a finite volume approach so that the first order correct discrete
solution follows from:

Un+1
i = Un

i +
∆t

h
(F n

i−1/2 − F n
i+1/2) (14)

where Un+1
i is the average of the cell i at time step n + 1, ∆t is the time step size, h is

the cell size, and F n
i−1/2 and F n

i+1/2 are the fluxes through the left and right cell boundary.
Taking the hyperbolic character of the compressible Euler equations into account, a particularly
efficient method for approximating the interface fluxes in (14) consists of solving local Riemann
problems at each cell interface. For real gases, the local Riemann problems may be solved using
Roe’s approximate solver [24]. Although the sketched discretization scheme is first order in
space as well as in time, it serves as a starting point for many higher order schemes.

In the present framework, the spatially-discretized equations are integrated in time with
the second-order Runge-Kutta algorithm. Second order accuracy is achieved via linear recon-
struction with Van Leer type slope limiting applied to projections in characteristic state space
[26, 14]. A review of the various schemes for approximating the fluxes and their extension to
higher order schemes may be found in standard text books [14]. For more details of the partic-
ular formulation employed and its parallel implementation including adaptive mesh refinement
capability we refer to reference [1].

4 Eulerian-Lagrangian Fluid-Shell Coupling
A critical aspect of any Eulerian-Lagrangian fluid-shell coupling strategy is to formulate a theo-
retically sound and, at the same time, computationally effective means to algorithmically couple
the fluid and shell solvers. For the explicit dynamics case, one approach is to loosely couple
the two solvers by applying appropriate interface boundary conditions at the beginning of each
time step. The interface boundary conditions follow from explicitly enforcing the

• continuity of the normal velocity

• continuity of the pressure

at the interface. In the fluid solver, normal velocity continuity and free-tangential-flow (slip)
boundary conditions, required for the inviscid Euler model, may be enforced through a narrow
band of so-called ghost cells outside the physical fluid domain, Figure 2. The field variables in
the ghost cells, namely the fluid velocity, pressure, and density, are chosen in dependence of the
solution within the physical domain and the shell velocity.



F. Cirak and R. Radovitzky 7

Shell

Fluid

Figure 2: Identification of the fluid and the ghost cells given the instant location of the shell.

First, the ghost cells are populated by extrapolating the velocity, pressure, and density cell
averages from adjacent active fluid cells. Various approaches for the extrapolation are con-
ceivable, such as constant extrapolation from the closest point on the interface, extrapolation
with the fast extension methods [29], or propagation with the eikonal equation [2], as in our
framework,

∂α

∂t
+ n · ∇α = 0 (15)

where α is the variable to be extrapolated and n is the interface normal. Subsequently, the ghost
cell velocities are modified so that the relative fluid velocity normal to the interface is zero:

uFluid =
[
(2uShell − ũFluid) · n

]
n +

[
ũFluid − (ũFluid · n)n

]
(16)

where ũFluid is the fluid velocity extrapolated from the active fluid cells and uShell is the shell
velocity extrapolated from the shell middle surface. Note that for the case of zero shell ve-
locity and spatially matching interface shell and fluid nodes equation (16) enforces a reflect-
ing type boundary condition at the interface. The velocity component normal to the interface
(ũFluid · n)n is simply reflected with −(ũFluid · n)n and the tangential velocity component
(ũFluid − ũFluid · n)n is not constrained. After setting the velocity values in the ghost cells at
the beginning of each time step, the standard fluid solver is applied to the entire Cartesian mesh
without any modifications.

In order to enforce the pressure continuity at the shell-fluid interface, the pressure on the
shell surface is interpolated from the adjacent real fluid cells at the beginning of each time step.
The interpolated pressure is applied as a traction boundary condition on the shell finite element
mesh, which in effect accomplishes the momentum transfer from the fluid to the shell.

A key element for the success of the proposed coupling strategy is the availability of a fast
and scalable algorithm for determining the shell position on the Cartesian fluid mesh at each
time step. In our framework, the location of the shell relative to each fluid cell is obtained by
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recourse to a level set function. The level set function φ(x) at a point x is defined as the signed
distance to the shell middle surface:

φ(x)


< 0 ghost fluid domain
= 0 shell middle surface
> 0 physical fluid domain

(17)

Further, the normal to the interface may be computed by evaluating the expression

n =
∇φ

‖∇φ‖
(18)

with central differencing. The signed distance function can be most efficiently computed with
the linear time algorithm developed by Mauch [16]. Using Mauch’s algorithm, we compute at
the beginning of each time step the signed distance of the fluid cells to the deformed shell mesh
without using any information about the prior position or velocity of the interface. Alternatively,
it is possible to dynamically update the level set information by propagating the interface with
the known interface velocities, e.g., as proposed in [27].

For the signed distance function computation and coupling purposes, the smooth deformed
shell surface is approximated by the control mesh. Importantly, the control mesh positions
and velocities are for the approximating subdivision schemes different from the positions and
velocities of the represented limit surface. However, for a given control mesh the limit positions
and velocities can easily be computed with compact limit masks, see e.g. [6]. We use the limit
positions and velocities as the input for the coupling algorithm.

In summary, the introduced coupling strategy leads to a robust and scalable method for the
treatment of high-speed flows interacting with highly-deformable solids. The stable time step
size for the shell or fluid solvers is not negatively influenced by the coupling procedure. The
coupling algorithm’s overall computational complexity is determined by the level set computa-
tion and is of order O(m + n), where m is the number of grid points in the subset of the fluid
grid where the level set is required and n is the number of elements in the shell mesh.

5 Example
We consider the simulation of airbag deployment for demonstrating the feasibility and power of
the developed method in computing the complex interactions of high speed flows with highly-
deformable thin-shell structures.

The simulation corresponds to an initially-flat airbag made of an elastic fabric with a Young’s
modulus of E = 6.0 · 109Pa, Poisson’s ratio of ν = 0.3, and mass density of ρ = 1000.0 kg

m3 ,
Figure 3. The thickness of the airbag is 7.3 · 10−4m and the diameter in its flat initial configu-
ration is D = 0.74m. The discretization of the airbag consists of 10176 subdivision thin-shell
elements and 5101 vertices. Due to the extreme thinness, it may appear justified to neglect the
bending resistance and to idealize the airbag fabric as a membrane. However, the bending en-
ergy plays a crucial role in determining the size and folding patterns of the shell [5, 22, 20, 4]
and therefore can be expected to have an important influence on the fluid flow.

The gas enters the airbag with a pressure of p = 12.0atm, mass density of ρ = 16.0 kg
m3 , and

vertical velocity of uz = 73.0m
s

. The initial properties of the gas are: p = 1.0atm, ρ = 13.0 kg
m3 ,
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Figure 3: Airbag geometry.

and γ = 1.4. The expanding gas generates a weak shock wave that propagates inside the
airbag and interacts with the airbag walls. The inlet conditions of the gas are kept constant
until 9.71ms and later changed to reflecting type boundary conditions. The fluid domain of
0.86m×0.86m×0.49m is discretized with 48×48×62 fluid cells. For the fluid-shell interaction
only the fluid inside the airbag volume is considered.

Figures 4 and 5 show a sequence of snapshots of the simulation. The deformed airbag
meshes are shown on Figure 4 and the shell limit surface with the density isocontours of the
enclosed fluid in Figure 5. The portions of the fluid grid that are external to the airbag have
been left out for visual clarity by making use of the level set function. Important features of
the mechanics of the airbag deployment process can be observed in these figures, including
the high-frequency wrinkling modes of the airbag fabric and the shock reflections of the gas
on the deforming airbag walls. The computed maximum displacement of the airbag fabric is
0.48m and the total simulation time 32.5ms, Figure 6. The ability of the presented method
to capture these complex features of the coupled interaction between the flow and the highly
flexible airbag fabric is particularly noteworthy.

The simulations were performed using 58 Intel Pentium III R© processors on a Beowulf
cluster with a one Gbps fast Ethernet switch. The computation time for the whole simulation
was approximately 15 hours.

6 Conclusions
We have developed a robust and efficient numerical approach for the simulation of compressible
flows interacting with highly-deformable thin-shells. The method furnishes an effective means
of coupling Cartesian mesh based Eulerian fluid solvers and Lagrangian subdivision shells, thus
exploiting the strength of these particular formulations. The versatility and excellent robustness
of the approach has been demonstrated with a simulation of an airbag deployment process. The
proposed coupling approach enables the modeling of the fluid, shell, and their interaction in
full detail with an equivalent level of fidelity without any oversimplifying assumptions, as is
common in many fluid-solid interaction methods.

In closing, a number of possible extensions of the theory are worth mentioning. Firstly, the
presented coupling algorithm is not conservative and only first order accurate. In particular, the
conservation or higher order accuracy of the discrete mass and momenta at the interface is very
desirable for many shell fluid interaction problems. Indeed, there are conserving or higher order
Eulerian front tracking schemes available[19, 18], which might be extendable to shell fluid in-
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Figure 4: Deformed control meshes at step 2500 (4.25 ms), 5000 (8.16 ms), 7500 (12.13 ms),
and 10000 (18.02 ms).
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Figure 5: Deformed limit surfaces and density iso-contours of the enclosed fluid at step 2500
(4.25 ms), 5000 (8.16 ms), 7500 (12.13 ms), and 10000 (18.02 ms).



F. Cirak and R. Radovitzky 12

D
is

pl
ac

em
en

t [
m

]

 0.5

 0.45

 0.4

 0.35

 0.3

 0.25

 0.2

 0.15

 0.1

 0.05

 0
 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035

Time [ms]

Figure 6: Maximum vertical displacement history.

teraction problems. For problems involving permeable membranes, such as the airbag inflation,
there is also a need for the controlled dissipation of the mass and momenta at the interface due
to the permeability of the woven membrane. Finally, a large class of shell structures, such as
plates, do not have a uniquely identifiable inside or outside and in that context, the notion of
a signed distance is meaningless. For such problems, a similar coupling strategy based on the
distance and the normal information of the oriented shell surface appears to be feasible.
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