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Abstract

We develop a new paradigm for thin-shell finite-element analysis based on the use of
subdivision surfaces for: i) describing the geometry of the shell in its undeformed con-
figuration, and ii) generating smooth interpolated displacement fields possessing bounded
energy within the strict framework of the Kirchhoff-Love theory of thin shells. The partic-
ular subdivision strategy adopted here is Loop’s scheme, with extensions such as required
to account for creases and displacement boundary conditions. The displacement fields ob-
tained by subdivision are H2 and, consequently, have a finite Kirchhoff-Love energy. The
resulting finite elements contain three nodes and element integrals are computed by a one-
point quadrature. The displacement field of the shell is interpolated from nodal displace-
ments only. In particular, no nodal rotations are used in the interpolation. The interpolation
scheme induced by subdivision is nonlocal, i. e., the displacement field over one element
depend on the nodal displacements of the element nodes and all nodes of immediately
neighboring elements. However, the use of subdivision surfaces ensures that all the local
displacement fields thus constructed combine conformingly to define one single limit sur-
face. Numerical tests, including the Belytschko et al. [7] obstacle course of benchmark
problems, demonstrate the high accuracy and optimal convergence of the method.
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1 Introduction
The Kirchhoff theory of thin plates and the Kirchhoff-Love theory of thin shells are character-
ized by energy functionals which depend on curvature; consequently they contain second-order
derivatives of displacement (e. g. [41, 18]). The resulting Euler-Lagrange — or equilibrium —
equations in turn take the form of fourth-order partial differential equations. It is well-known
from approximation theory (e.g.,[13]) that in this context, the convergence of finite-element so-
lutions requires so-called C1 interpolation. More precisely, in order to ensure that the bending
energy is finite, the test functions have to be H2, or square-integrable functions whose first-
and second-order derivatives are themselves square-integrable. Unfortunately, for general un-
structured meshes it is not possible to ensure C1 continuity in the conventional sense of strict
slope continuity across finite elements when the elements are endowed with purely local poly-
nomial shape functions and the nodal degrees of freedom consist of displacements and slopes
only [44]. Inclusion of higher-order derivatives among the nodal variables [2, 6] leads to well-
known difficulties, e.g., the inability to account for stress and strain discontinuities in shells
whose properties vary discontinuously across element boundaries [44], and, owing to the high
order of the polynomial interpolation required, the presence of spurious oscillations in the solu-
tion.

The difficulties inherent in C1 interpolation have motivated a number of alternative ap-
proaches, all of which endeavor to ‘beat’ the C1 continuity requirement. Examples are: quasi-
conforming elements obtained by relaxing the strict Kirchhoff constraint; the use of Reissner-
Mindlin theories for thick plates and shells (which requires conventionalC0 interpolation only);
reduced-integration penalty methods; mixed formulations; degenerate solid elements; and oth-
ers. The different approaches proposed in the literature and relevant references thereof are too
numerous to list here. Excellent reviews and insightful discussions may be found in [3, 21, 11,
7, 20, 34, 35, 44, 36, 37, 10, 1, 31, 43, 9, 27]. C0 elements often exhibit poor performance in
the thin-shell limit — especially in the presence of severe element distortion. Such distortion
may be due to a variety of pathologies such as shear and membrane locking. The proliferation
of approaches and the rapid growth of the specialized literature attest to the inherent, perhaps
insurmountable, difficulties in vanquishing the C1 continuity requirement.

Simultaneously with the development of C0 plate and shell elements, and for the most part
unbeknownst to mechanicians, the field of computer aided geometric design has taken consider-
able strides towards the efficient generation and representation of smooth surfaces. In particular,
the use of subdivision surfaces [12, 15, 26, 16, 29, 45, 39] provides a powerful tool for generat-
ing smooth surfaces which either interpolate or approximate an arbitrary collection of points or
‘nodes’. Here, smoothness is understood in the sense of H2 surfaces, i.e., surfaces whose cur-
vature tensor is L2, or square summable. Subdivision surfaces follow as the limit of a recursive
iteration based on a triangulation of the nodal point set, e.g., by recourse to the classical Loop
scheme [26]. Within this framework, the treatment of complex geometries with intersections
or curved boundaries is straightforward. Subdivision surfaces obtained by the Loop scheme
are guaranteed to be H2, i.e., to have finite bending energy, and are therefore ideally suited as
test functions for plate and shell analyses. The smoothness of the limit surface may also be
suitably relaxed in the presence of thickness or material discontinuities. The method of subdi-
vision surfaces thus effectively solves the elusive and long-standing C1-interpolation problem
which has traditionally plagued plate and shell finite-element analyses. The ready availability
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of smooth approximating surfaces for arbitrary geometries and triangulations enables a return to
the ‘basic’ finite-element method, e.g., the Rayleigh-Ritz method, with the attendant guarantee
of optimal convergence (e.g.,[13]).

We propose the subdivision-surface concept as a new paradigm for plate and shell C1 finite-
element analyses. We rely on subdivision to generate smooth deformed surfaces from a triangu-
lation of an arbitrary nodal point set. This nodal point set is displaced from that which defines
the reference configuration of the shell according to an array of nodal displacements. The nodal
displacements are determined as follows. The energy of the deformed plate or shell is given by
a direct evaluation of the Kirchhoff or Kirchhoff-Love energy functional. The requisite bound-
edness of the bending energy is ensured by the H2 property of the test deformed geometries.
The equilibrium displacements then follow simply by recourse to energy minimization. Within
the framework of linear theories, this process of energy minimization leads to a symmetric and
banded system of linear equations for the nodal displacements.

The triangles in the triangulation of the nodal point set may be regarded as three-node fi-
nite elements. In particular, the total energy of the shell is the sum of the local energies of
the elements. These local energies in turn follow by integration over the domain of the ele-
ment. However, the interpolation scheme to which the subdivision paradigm leads differs from
conventional finite-element interpolation in a crucial respect: the displacement field within an
element depends not only on the displacements of the nodes attached to the element but also on
the displacements of all the immediately adjacent nodes in the triangulation. Thus, the displace-
ment field within an element is determined by the nodal displacements of a ‘link’ or ‘patch’ of
adjacent elements. (However, special rules are required for elements which abut on an edge
of the shell.) Our approach shares some aspects in common with the finite-volume approach
recently proposed by Rojek, Oñate and Postek [32]. For instance, the patches corresponding
to neighboring elements may overlap. However, when the displacement field is constructed by
subdivision (as in our approach), the displacement representations within the intersection of
two patches coincide exactly. Thus, subdivision leads to a unique and well-defined surface over
the complete finite-element triangulation, as opposed to a collection of non-conforming local
interpolations.

An additional advantage afforded by the present approach is that the geometrical modeling
and the finite-element analysis are based on an identical representational paradigm, that is, both
the undeformed and the deformed geometries of the plates and shells are described by recourse
to subdivision. The necessity of a unique framework for geometric design and mechanical anal-
ysis has been addressed by various authors [22, 24]. The unification of the geometrical and
finite-element representations offers a robust environment which effectively sidesteps many of
the difficulties inherent in the currently available software tools, which suffer from heteroge-
neous and, therefore, error-prone interfaces.

The outline of this paper is as follows. In Section 2 we begin by summarizing the rele-
vant equations of the Kirchhoff-Love theory of shells, of which the Kirchhoff theory of plates
is a special case. Throughout the present work we confine our attention to the linear theory
of shells under static loading. In Section 3 we briefly summarize the relevant aspects of the
standard finite-element discretization of the Kirchhoff-Love thin-shell theory. In Section 4 we
turn to the central problem of formulating strictlyC1 finite-element interpolation schemes using
subdivision surfaces. We begin with a brief summary of the relevant constructions and results
pertaining to subdivision surfaces. The application of subdivision surfaces to the finite-element
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Figure 1: Shell geometry in the reference and the deformed configurations.

analysis of thin shells is taken up next. Finally, the excellent performance of the method is es-
tablished in Section 5 with the aid of selected convergence tests, including the obstacle course
of benchmark tests proposed by Belytschko et al. [7].

2 Thin-Shell Boundary Value Problem
In this section we summarize the field equations for the classical stress-resultant shell model.
A detailed presentation of the classical shell theories can be found in [28]. Here we follow
Simo et al. [34, 35] elegant formulation of the Reissner-Mindlin theory, which we specialize
to Kirchhoff-Love theory by explicitly constraining the shell director to remain normal to the
deformed middle surface of the shell.

2.1 Kinematics of Deformation
We begin by considering a shell whose underformed geometry is characterized by a middle
surface of domain Ω and boundary Γ = ∂Ω. For simplicity we assume throughout that the
thickness h of the shell is uniform. The shell deforms under the action of applied loads and
adopts a deformed configuration characterized by a middle surface of domain Ω and boundary
Γ = ∂Ω.

The position vectors r and r of a material point in the reference and deformed configurations
of the shell may be parametrized in terms of a system {θ1, θ2, θ3} of curvilinear coordinates as:

r(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ
1, θ2), −h

2
≤ θ3 ≤ h

2
(1)
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r(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ
1, θ2), −h

2
≤ θ3 ≤ h

2
(2)

The functions x(θ1, θ2) and x(θ1, θ2) furnish a parametric representation of the middle surface
of the shell in the reference and deformed configurations, respectively (Fig. 1). The correspond-
ing surface basis vectors are:

aα = x,α , aα = x,α (3)

where here and henceforth Greek indices take the values 1 and 2, and a comma is used to denote
partial differentiation. The covariant components of the surface metric tensors in turn follow as:

aαβ = aα · aβ , aαβ = aα · aβ (4)

For later reference we also introduce the contravariant components of the undeformed and de-
formed surface metric tensors, aαβ and aαβ , respectively. The defining property of these com-
ponents is:

aαγaγβ = δαβ , aαγaγβ = δαβ (5)

We also note that the element of area over Ω follows as

dΩ =
√
a dθ1dθ2 (6)

where
√
a = |a1 × a2| (7)

is the jacobian of the surface coordinates {θ1, θ2}.
The shell director a3 in the reference configuration coincides with the normal to the unde-

formed middle surface of the shell and hence has the properties:

aα · a3 = 0 , |a3| = 1 (8)

which give a3 explicitly in the form:

a3 =
a1 × a2

|a1 × a2|
(9)

For the moment we allow the director a3 on the deformed configuration of the shell to be an
arbitrary vector field.

The covariant base vectors in the reference and the current configurations follow simply as

gα =
∂r

∂θα
= aα + θ3a3,α , g3 =

∂r

∂θ3
= a3 (10)

gα =
∂r

∂θα
= aα + θ3a3,α , g3 =

∂r

∂θ3
= a3 (11)

The corresponding covariant components of the metric tensors in both configurations are:

gij = gi · gj , gij = gi · gj (12)
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where here and henceforth lowercase Latin indices take the values 1, 2, and 3.
The Green-Lagrange strain tensor is defined as the difference between the metric tensors on

the deformed and undeformed configurations of the shell, i. e.,

Eij =
1

2
(gij − gij) (13)

Using equations (10), (11), and (12), the Green-Lagrange strain of the shell is found to be of
the form:

Eij = αij + θ3βij (14)

to first order in the shell thickness h (e. g., [4] pp. 107–112). The nonzero components of the
tensors αij and βij are in turn related to the deformation of the shell as follows:

αij =
1

2
(ai · aj − ai · aj) (15)

βαβ = aα · a3,β − aα · a3,β (16)

In particular, the in-plane components ααβ, or membrane strains, measure the straining of the
surface; the components αα3 measure the shearing of the director a3; the component α33 mea-
sures the stretching of the director; and the compoments βαβ, or bending strains, measure the
bending or change in curvature of the shell, respectively.

The above kinematic relations allow for finite deformations as well as for shearing and
stretching of the shell director. In the remainder of this paper we restrict our attention to the
Kirchhoff-Love theory of thin shells and, accordingly, we constrain the deformed director a3 to
coincide with the unit normal to the deformed middle surface of the shell, i. e.,

aα · a3 = 0, |a3| = 1 (17)

which yields

a3 =
a1 × a2

|a1 × a2|
(18)

Owing to these constraints, the shear strains αα3 vanish identically and the bending strains
simplify to:

βαβ = aα,β · a3 − aα,β · a3 (19)

It follows from these relations that, by virtue of the assumed Kirchhoff-Love kinematics, all the
strain measures of interest may be deduced from the deformation of the middle surface of the
shell.

For simplicity, we restrict the scope of subsequent discussions to linearized kinematics. To
this end, we begin by writing

x(θ1, θ2) = x(θ1, θ2) + u(θ1, θ2) (20)
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where u(θ1, θ2) is the displacement field of the middle surface of the shell. To first order in u
the membrane and bending strains then follow as:

ααβ =
1

2
(aα · u,β + u,α · aβ) (21)

βαβ = −u,αβ · a3 +
1√
a

[u,1 ·(aα,β × a2) + u,2 ·(a1 × aα,β)]

+
a3 · aα,β√

a
[u,1 ·(a2 × a3) + u,2 ·(a3 × a1)] (22)

It is clear from these expressions that the displacement field u of the middle surface furnishes
a complete description of the deformation of the shell and may therefore be regarded as the
primary unknown of the analysis. It also follows that the deformed and undeformed domains Ω
and Ω are indistinghishable to within the order of approximation of the linearized theory and,
in consequence, we drop the distinction between the two domains throughout the remainder of
the paper.

2.2 Equilibrium Deformations of Elastic Shells
Next, we seek to characterize the equilibrium configurations of the shell by recourse to energy
principles. For simplicity, we shall assume throughout that the shell is linear elastic with a strain
energy density per unit area of the form:

W (α,β) =
1

2

Eh

1− ν2
Hαβγδααβαγδ +

1

2

Eh3

12(1− ν2)
Hαβγδβαββγδ (23)

where E is Young’s modulus, ν is Poisson’s ratio, and

Hαβγδ = ν aαβaγδ +
1

2
(1− ν) (aαγaβδ + aαδaβγ) (24)

In (23), the first term is the membrane strain energy density and the second term is the bending
strain energy density. The membrane and bending stresses follow from (23) by work conjugacy,
with the result:

nαβ =
∂W

∂ααβ
=

Eh

1− ν2
Hαβγδαγδ (25)

mαβ =
∂W

∂βαβ
=

Eh3

12(1− ν2)
Hαβγδβγδ (26)

The membrane and bending stress tensors nαβ and mαβ may be given a direct mechanistic
interpretation as force and moment resultants [18, 34].

The shell is subject to a system of external dead loads consisting of distributed loads q per
unit area of Ω and axial forces N per unit length of Γ. Under these conditions the potential
energy of the shell takes the form:

Φ[u] = Φint[u] + Φext[u] (27)
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where

Φint[u] =
∫

Ω
W (α,β) dΩ (28)

is the elastic potential energy and

Φext[u] = −
∫

Ω
q · u dΩ−

∫

Γ
N · u ds (29)

is the potential energy of the applied loads.
The stable equilibrium configurations of the shell now follow from the principle of minimum

potential energy:

Φ[u] = inf
v∈V

Φ[v] (30)

where V is the space of solutions consisting of all trial displacement fields v with finite energy
Φ[v]. It is clear from the form of the elastic energy of the shell that such trial displacement fields
must necessarily have square integrable first and second derivatives. Within the context of the
linear theory, and under suitable technical restrictions on the domain Ω and the applied loads, it
therefore follows that V may be identified with the Sobolev space of functions H2(Ω, R3). In
particular, an acceptable finite-element interpolation method must guarantee that all trial finite
element interpolants belong to this space.

The Euler-Lagrange equations corresponding to the minimum principle (30) may be ex-
pressed in weak form as:

⟨DΦ[u], δu⟩ = ⟨DΦint[u], δu⟩+ ⟨DΦext[u], δu⟩ = 0 (31)

which is a statement of the principle of virtual work. Here ⟨DΦ[u], δu⟩ denotes the first varia-
tion of Φ at u in the direction of the virtual displacements δu,

⟨DΦint[u], δu⟩ =
∫

Ω
[nαβδααβ + mαβδβαβ ] dΩ (32)

is the internal virtual work and

⟨DΦext[u], δu⟩ = −
∫

Ω
q · δu dΩ−

∫

Γ
N · δu ds (33)

is the external virtual work. The minimum principle (30) or, equivalently, the virtual work
principle (31) are subsequently taken as a basis for formulating finite-element approximations
to the equilibrium configuration of the shell.

3 Finite-Element Discretization
We now turn to the finite-element discretization of the potential energy of the shell (27) or,
equivalently, its first variation (31). To this end, it proves convenient to adopt Voigt’s notation
and map symmetric second-order tensors into arrays by recourse to the conventions:

n =

⎛

⎜

⎝

n11

n22

n12

⎞

⎟

⎠ m =

⎛

⎜

⎝

m11

m22

m12

⎞

⎟

⎠ α =

⎛

⎜

⎝

α11

α22

2α12

⎞

⎟

⎠ β =

⎛

⎜

⎝

β11

β22

2β12

⎞

⎟

⎠ (34)
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The constitutive relations (Equations 25 and 26) may similarly be written in the form:

n =
Eh

1− ν2
Hα (35)

m =
Eh3

12(1− ν2)
Hβ (36)

where we write:

H =

⎛

⎜

⎝

(a11)2 νa11a22 + (1− ν)(a12)2 a11a12

(a22)2 a22a12

sym. 1
2 [(1− ν)a

11a22 + (1 + ν)(a12)2]

⎞

⎟

⎠ (37)

which replaces (24) within the Voigt formalism. Using these conventions, the internal virtual
work (32) may be recast in the convenient form

⟨Φint[u], δu⟩ =
∫

Ω

[

Eh

1− ν2
δαTHα+

Eh3

12(1− ν2)
δβTHβ

]

dΩ (38)

Next we proceed to partition the domain Ω of the shell into a finite element mesh, the precise
nature of which will remain unspecified for now. The collection of element domains in the
mesh is {ΩK , K = 1, . . . , NEL}, where ΩK denotes the domain of element K and NEL is
the total number of elements in the mesh. The finite-element mesh may be taken as a basis for
introducing a displacement interpolation of the general form:

uh(θ
1, θ2) =

NP
∑

I=1

N I(θ1, θ2)uI (39)

where {NI , I = 1, . . . , NP} are the shape functions, {uI , I = 1, . . . , NP} are the corre-
sponding nodal displacements, and NP is the number of nodes in the mesh. Owing to the
linearity of the dependence of the finite-element interpolant uh on the nodal displacements, an
application of (21) and (22) to (39) gives the finite-element membrane and bending strains in
the form:

αh(θ
1, θ2) =

NP
∑

I=1

M I(θ1, θ2)uI (40)

βh(θ
1, θ2) =

NP
∑

I=1

BI(θ1, θ2)uI (41)

for some matrices M I and BI . The precise form of this matrices is given in Appendix A.0.3.
Finally, the introduction of (39), (40) and (41) into the principle of virtual work (31) yields the
equations of equilibrium for the nodal displacements:

Khuh = fh (42)

where, by a slight abuse of notation, here we take uh to signify the array of nodal displacements,

KIJ
h =

NEL
∑

K=1

∫

ΩK

[

Eh

1− ν2
(M I)THMJ +

Eh3

12(1− ν2)
(BI)THBJ

]

dΩ ≡
NEL
∑

K=1

KIJ
K (43)
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is the stiffness matrix, and

f I
h =

NEL
∑

K=1

{
∫

ΩK

qN I dΩ +
∫

ΓK∩Γ
NN I ds

}

≡
NEL
∑

K=1

f I
K (44)

is the nodal force array. It should be carefully noted that, as expected, the global stiffness and
force arrays just defined follow by the assembly of low-dimensionality element stiffness and
force arrays KIJ

K and f I
K , respectively, as is standard in the finite-element method.

The computation of element arrays requires the evaluation of integrals extended to the do-
main of each element, cf. Equations (43), (44). These integrals may efficiently be evaluated by
recourse to numerical quadrature without compromising the order of convergence. For instance,
the application of a quadrature rule to the calculation of the element stiffness matrices leads to
the expression:

KIJ
K =

NQ
∑

G=1

[

Eh

1− ν2
(M I)THMJ +

Eh3

12(1− ν2)
(BI)THBJ

]

(θ1G,θ2G)

√

a(θ1
G, θ

2
G)wG(45)

where (θ1
G, θ

2
G) are the quadrature points, wG are the corresponding quadrature weights, and NQ

is the number of quadrature points in the rule. The element force arrays fI
K may be computed

likewise.
Sufficient conditions for the quadrature rule to preserve the order of convergence of the

finite-element method may be found in [40]. In general, this conditions demand that certain
shape function derivatives be computed exactly and, consequently, place a lower bound on the
order NQ of the quadrature rule. These theoretical considerations and our numerical tests show
that a one-point quadrature rule is sufficient to compute all element arrays of interest.

4 Subdivision Surfaces and Finite-Element Interpolation
It is clear from the preceding developments that the central problem in thin-shell finite-element
analysis is the formulation of shape functions NI which are H2 (or ‘C1’ in the usual finite-
element terminology), as this property ensures the finiteness of the energy of the trial displace-
ment fields. In this section we develop one such interpolation scheme based on the notion of
subdivision surface.

4.1 Subdivision Surfaces
We begin by reviewing the essential ideas behind subdivision surfaces using one-dimensional
examples first, then moving to the two-dimensional manifold (with boundary) setting relevant
to shells. Here we limit ourselves to reviewing various elementary properties of subdivision.
The interested reader is referred to [29, 33, 45, 46] for more details and further pointers to the
literature.

Throughout this discussion the term vertex will be used to refer to nodes in the mesh. For
example, a vertex has associated with it a particular nodal position. A vertex has a topological
neighborhood defined by the structure of the mesh. For example, its 1-ring neighbors are all
those vertices which share an edge with it (and recursively for its k-ring). This distinction
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between vertices and nodal positions is typically not needed when dealing with finite elements,
but it is important to keep these distinctions in mind when dealing with smooth subdivision.

At the highest level of description we may say that subdivision schemes construct smooth
surfaces through a limiting procedure of repeated refinement starting from an initial mesh. This
initial mesh will also be referred to as the control mesh of the surface. Generally, subdivision
schemes consist of two steps. First the mesh is refined, e.g., all faces are quadrisected, followed
by the computation of new nodal positions. These positions are simple, linear functions of the
nodal positions of the coarser mesh. For the schemes of interest these computations are local,
i.e., they involve only nodal positions of the coarser mesh within a small, finite topological
neighborhood, leading to very efficient implementations. Using a suitable choice of weights,
such subdivision schemes can be designed to produce a smooth surface in the limit. Subdivision
methods which result in limit surfaces whose curvature tensor is square integrable are especially
appealing for geometrical modeling applications and for the purpose of thin-shell analysis.

The first such schemes were proposed by Catmull and Clark [12] and Doo and Sabin [15].
Since then, many other schemes have been proposed and studied extensively in the mathemati-
cal geometric modeling literature. The methods can be separated into two groups:

• Interpolating Schemes: The nodal positions of the coarser mesh are fixed, while only the
nodal positions of new vertices are computed when going from a coarser to a finer mesh.
Consequently, the nodal positions of the initial mesh, as well as any nodes produced
during subdivision, interpolate the limit surface. Interpolating schemes for quadrilateral
meshes have been introduced by Kobbelt et al. [24], while Dyn et al. [16] and Zorin
et al. [47] described interpolating schemes for triangular meshes. In both cases the limit
surfaces are C1 but their curvatures do not exist. Therefore, these schemes are not suitable
for the special application of thin-shell analysis.

• Approximating Schemes: These schemes compute both new nodal positions for the
newly created vertices, as well as for the vertices inherited from the coarser mesh, i.e.,
those which already carried nodal positions. Consequently, the nodal positions of the
initial mesh are not samples of the final surface. The schemes of Catmull-Clark [12]
and Doo-Sabin [15] fall into this class and operate on quadrilateral meshes. An approx-
imating scheme for triangular meshes introduced by Loop [26] is used in the present
work. This scheme produces limit surfaces which are globally C2 except at a number of
isolated points where they are only C1. However, their principal curvatures are square
integrable [30], making them good candidates for thin-shell analysis.

A simple one-dimensional example of an approximating as well as an interpolating scheme is
shown in Figure 2. We assume that the polygon with the nodes xk

I is the result of subdivision
step k. In the subsequent refinement k + 1 for the approximating scheme, a new vertex gets a
nodal position xk+1

2I+1 which is the average of its two neighboring nodes xk
I and xk

I+1:

xk+1
2I+1 =

1

2
(xk

I + xk
I+1) (46)

The nodal positions of the existing vertices are recomputed as

xk+1
2I =

1

8

(

xk
I−1 + 6xk

I + xk
I+1

)

(47)
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Since throughout the subdivision process all nodal positions are recomputed as weighted av-
erages of nearby vertices, the resulting scheme does not interpolate the nodal positions of the
control mesh, but rather approximates them.

In contrast, the interpolating scheme (see Figure 2) does not modify the coordinates of nodes
existing at the previous refinement level:

xk+1
2I = xk

I (48)

Only the newly generated vertices receive new nodal coordinates:

xk+1
2I+1 =

1

16

(

−xk
I−1 + 9xk

I + 9xk
I+1 − xk

I+2

)

(49)

Repeating this process ad infinitum leads to smooth curves. In the case of the approximating
scheme above, these curves are actually cubic splines which are C2 continuous. The interpolat-
ing scheme on the other hand is known as the 4pt scheme, and it can be shown that the resulting
curves are C2−ϵ continuous [14]. Since the entire subdivision process is linear, the resulting
limit curves (or surfaces) are linear combinations of basis functions (sometimes referred to as
‘fundamental solutions’ of the subdivision process). The compact support of the subdivision
rules ensures that the basis functions are compactly supported as well. For the approximating
scheme above, this support extends two vertices to the left and two vertices to the right (and
hence is a 2-ring), while the 4pt scheme has a support covering three vertices to each the left
and right (hence a 3-ring). Both schemes belong to the class of regular subdivision schemes
since the weights are the same for every vertex and every level. In the two-dimensional case,
we will see that the weights will depend on the valence, i.e., the number of edges attached to
a vertex, but are otherwise the same from level to level. These rules are also referred to as
semi-regular. Similarly one can adapt the rules to non-smooth features such as boundaries or
creases [19], as well as other boundary conditions [8].

In the one-dimensional case, subdivision schemes do not offer an important advantage since
curves of the desired smoothness are easy to construct with traditional approaches such as Her-
mitian interpolation. In the two-dimensional, arbitrary-topology manifold setting, by contrast,
subdivision methods offer significant advantages over other methods of smooth-surface con-
struction. In fact, their original invention was motivated by the difficulties of constructing
smooth-surface models of arbitrary-topology. For example, it is well known that C2 arbitrary-
topology surfaces built with traditional patches require up to sixth-order polynomials, leading
to cumbersome computations and difficult-to-manage cross-patch continuity conditions. Ad-
ditionally, the resulting degrees of freedom often lack physical meaning. In the subdivision
setting however, the only degrees of freedom are the nodal positions and the resulting surfaces
are guaranteed to be smooth without the need to enforce cross-patch continuity conditions.

In the following sections we introduce the refinement rules used in Loop’s subdivision
scheme for surfaces; and, based on the concept of the subdivision matrix, briefly discuss the
basic ideas behind the scheme’s smoothness analysis. This discussion will serve to prepare the
way for the parameterization of subdivision surfaces needed for the evaluation of positions, tan-
gents, and curvatures. In particular, it is possible to evaluate these quantities exactly through the
use of eigenanalysis without going to the limit. While we focus on Loop’s scheme, we hasten
to point out that the basic ideas and machinery apply equally well to other subdivision schemes.
In particular, the Catmull-Clark scheme, with quadrilateral elements, is a promising alternative
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second subdivision stepfirst subdivision stepinitial polygon

Figure 2: Two subdivision methods: approximating (first row) and interpolating (second row).

Valence of a vertex : The number of element edges attached to a vertex
Regular vertex : Vertex with valence six
Irregular vertex : Vertex with valence unequal to six
One ring of a vertex : Set of vertices incident to the vertex
One ring of an element : Set of elements incident to the element

Figure 3: Summary of frequently used terms in the case of triangle meshes

for finite-element computations, since quadrilateral elements generally perform relatively better
for very coarse meshes.

4.2 Refinement Rules
In Loop’s subdivision scheme, the control mesh and all refined meshes consist of triangles only.
These are refined by quadrisection (Fig. 4). After the refinement step, the nodal positions of the
refined mesh are computed as weighted averages of the nodal positions of the unrefined mesh.
We distinguish two cases: new vertices associated with the edges of the coarser mesh, and old
vertices of the coarse mesh.

The coordinates of the newly generated nodes x1
1,x

1
2,x

1
3, · · · on the edges of the previous

mesh are computed as:

xk+1
I =

3xk
0 + xk

I−1 + 3xk
I + xk

I+1

8
I = 1, . . . , N (50)

whereby index I is to be understood in modulo arithmetic. The old vertices get new nodal
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Figure 4: Refinement of a triangular mesh by quadrisection.

positions according to:

xk+1
0 = (1−Nw)xk

0 + wxk
1 + · · · + wxk

N (51)

where xk are the nodal positions of the mesh at level k and xk+1 are the respective positions for
the mesh k + 1. The valence of the vertex, i.e., the number of edges incident on it, is denoted
by N . Note that all newly generated vertices have valence 6 while only the vertices of the
original mesh may have valence other than 6. We will refer to the former case (valence = 6) as
regular and to the latter case as irregular. The eqs. 50 and 51 are visualized in symbolic form
in Figure 5 with the so-called subdivision mask. At this stage it is not obvious how to choose
the parameter w to get C1 continuous surfaces. In the original scheme Loop [26] proposed

w =
1

N

[

5

8
−
(

3

8
+

1

4
cos

2π

N

)2
]

. (52)

As it turns out other values for w also give smooth surfaces. For example, Warren’s [42] choice
for w is simpler to evaluate than that of Equation 52:

w =
3

8N
for N > 3 w =

3

16
for N = 3 (53)

Although the choice for the weights appears somewhat arbitrary, the motivation for this choice
will be discussed in the next section. In any case, the weights used by the subdivision scheme
depend only on the connectivity of the mesh and are independent of the nodal positions.

So far we have ignored the boundary of the mesh, where the subdivision rules need to
be modified. Two choices are possible here. The first method considers the boundary as a
one-dimensional curve and applies the rules of Equations (46) and (47) to any vertices on the
boundary (see [19]). Another method for the treatment of boundaries, which we employ in our
implementation, was proposed by Schweitzer [33]. For each boundary edge, one temporary ver-
tex is defined, after which the ordinary rules are applied. The nodal positions of the temporary
vertices are set to (see Figure 6) :

x0
3 = x0

0 + x0
2 − x0

1 and x0
4 = x0

0 + x0
5 − x0

6. (54)
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Figure 5: Refinement mask for Loop’s subdivision scheme.
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Figure 6: Smooth boundary approximation with artificial nodes.
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Figure 7: Distributor cap: Control mesh, first subdivided mesh, and the resulting limit surface
(original data courtesy Hugues Hoppe).

This particular choice of temporary vertices effectively reproduces the one-dimensional subdi-
vision rules.

This simplified boundary treatment with temporary vertices leads to approximation errors
for corners and boundary vertices with valence other than 4. However, these errors do not inhibit
the convergence of the finite-element method. For modeling surfaces with creases or shell
intersections, the edge rules can also be applied within the mesh on appropriately tagged edges.
Figure 7 shows an example of a geometrically more complex shape, a distributor cap, using
such crease rules, demonstrating the ability of subdivision surfaces to model intricate shapes in a
straightforward fashion. The entire shape is a single, piecewise smooth surface. In this example,
the original mesh is chosen to be least-squares optimal in terms of geometric approximation
fidelity. For finite-element simulations, this triangulation first needs to be improved to ensure
a uniform aspect-ratio bound. Algorithms for performing this task have been described by
Kobbelt et al. [23]. In instances where the original geometry is given in some other form, a
remeshing step can be applied to produce high-quality subdivision meshes, as demonstrated by
Lee et al. [25].

4.3 Convergence and Smoothness
Subdivision methods for arbitrary-topology surfaces were introduced more than 20 years ago,
but not widely used in applications until the early 1990s when theoretical breakthroughs put
their convergence and smoothness analysis on a solid mathematical foundation [29, 33, 45]. If
all vertices are regular (valence 6 for triangles or valence 4 for rectangular schemes), powerful
Fourier methods can be used to establish smoothness properties. These techniques do not apply
in the arbitrary-topology manifold setting, in which irregular vertices cannot be avoided. The
critical question in this setting concerns the smoothness properties around irregular vertices.
The key tool in this analysis is the local subdivision matrix and its structure. The fact that the
analysis of these schemes can be reduced to the analysis of a local matrix is due to the local
support of the basis functions. In other words, the behavior of the surface in a neighborhood
of a node depends only on those basis functions whose support overlaps a neighborhood of the
node.
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For Loop’s scheme, the relevant neighborhood around a vertex is a 2-ring, i.e., all vertices
which can be reached by traversing no more than two edges. The subdivision matrix expresses
the linear relationship between the nodal positions in a 2-ring around a given vertex at level
k and the nodal positions around the same vertex in the 2-ring at level k + 1. This 2-ring
analysis is required to establish smoothness. Details of this approach, including necessary and
sufficient conditions, can be found in Reif [29], Zorin [45], and Schweitzer [33]. Once the
analytic properties have been established, quantities at a point, such as position or tangents, can
be computed using an even smaller subdivision matrix which relates 1-rings at level k to those
at level k+1. In the following we will discuss only this simpler setting since it is the one which
is needed for actual computations.

Let Xk be the vector of nodal positions of a vertex with valence N and its 1-ring neighbors
at level k, Xk = (xk

0,x
k
1, . . . ,x

k
N). Note that in the surface case we treat this vector as an N+1

vector of three-dimensional vectors, while in the functional setting it would be an N + 1 vector
of scalars. We can now express the linear relationship between the nodal positions at level k
and k + 1 with an (N + 1)× (N + 1) matrix S:

Xk+1 = SXk (55)

The entries of the matrix S are given by the subdivision rules (Equations 51 and 50). The study
of the limit surface then amounts to examining

X∞ = lim
k→∞

SkX0 (56)

From this it immediately follows that the limit surface cannot exist if S has an eigenvalue of
modulus larger than 1. Furthermore, it can be shown that it must have a single eigenvalue 1
and all other eigenvalues must have modulus strictly smaller than 1. This property also im-
plies that subdivision schemes are affinely invariant, i.e., an affine transformation applied to the
nodal positions of the control mesh results in a limit surface having undergone the same affine
transformation, which is a desirable property in practical applications. The associated right
eigenvector is easily seen to be the vector of all 1’s.

In the following we summarize the main results as needed for our finite-element setting.
Assume that the subdivision matrix has a complete set of eigenvectors (this property holds
for all schemes of practical interest, although it is not necessary for the analysis). Since the
subdivision matrix S is not self-adjoint, let RI and LJ be the right and left eigenvectors of S
respectively,

LJ ·RI = δIJ (57)

and let λI be the associated eigenvalues in non-increasing magnitude order, with λ0 = 1. Using
the eigenvalue decomposition, the nodal vector X0 can be written as

X0 =
N
∑

I=0

a0
IRI (58)

with a0
I = LI ·X0. Choosing this basis, Equation (56) takes the simple form:

X∞ = lim
k→∞

Sk
N
∑

I=0

a0
IRI = lim

k→∞

N
∑

I=0

λkIa
0
IRI (59)
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Figure 8: Limit masks for Loop’s subdivision scheme.

From this representation and the facts that λ0 = 1 and |λI | < 1 for I = 1, . . . , N , it follows
immediately that the center nodal position as well as all nodal positions in the 1-ring converge
to

X∞ = a0
0R0 (60)

Since R0 has the form R0 = (1, 1, · · · , 1) all the nodal positions in the 1-ring neighborhood
actually converge to a single position:

a0
0 = L0 ·X0 (61)

For the original Loop subdivision scheme, L0 is given as

L0 = (1−Nl, l, · · · , l) with l =
1

3/(8w) + N
. (62)

In practical terms this means that we can evaluate the limit position of the surface given at any
finite subdivision level by simply applying the mask shown in Figure 8. We can continue this
analysis and compute tangent vectors in a similar way. Assume that the control nodal positions
have been translated by −a0 so that the limit position for our selected vertex is the origin. The
leading term of Equation (59) is now controlled by the subdominant eigenvalues. Here we have
λ1 = λ2 > λ3, which results in

lim
k→∞

Xk

λk1
= a0

1R1 + a0
2R2 (63)

indicating that the nodal positions in the 1-ring all converge to a common plane spanned by the
vectors a0

1 and a0
2. While these vectors are not necessarily orthogonal, they do span a plane for

almost all initial configurations. An explicit formula for two tangent vectors to the limit surface
is:

t1 = L1 ·X0 t2 = L2 ·X0 (64)

whence the shell director follows as:

a3 =
t1 × t2
|t1 × t2|

(65)
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Figure 9: A regular box-spline patch with 12 control points.

In certain settings we may have λ1 ≥ λ2 > λ3, as pointed out by Schweitzer [33]. The above
equations for tangent vectors continue to hold, requiring an argument only slightly more in-
volved than the one above. For Loop’s scheme, L1,L2 are given by

L1 = (0, c1, c2, · · · , cN) L2 = (0, s1, s2, · · · , sN) (66)

with

cI = cos
2π(I − 1)

N
sI = sin

2π(I − 1)

N
.

Again we find that a very simple computation (see the masks in Figure 8) allows us to compute
the limit surface normal given the subdivision mesh at any level k. So far we have only discussed
the evaluation of position and tangents of the limit surface at parametric locations corresponding
to control vertices. For numerical evaluation of the Kirchhoff-Love energy functional we need to
evaluate these quantities— and curvature quantities— at quadrature points. This is particularly
simple in the case of Loop’s scheme (and similarly so for Catmull-Clark’s scheme) since Loop’s
scheme actually generalizes quartic box splines (Catmull-Clark’s scheme generalizes bi-cubic
splines). If the valencies of the vertices of a given triangle are all equal to 6, the resulting piece of
limit surface is exactly described by a single quartic box-spline patch, for which very efficient
evaluation schemes exist at arbitrary parameter locations. We call such a patch regular (see
Fig. 9). Regular patches are controlled by 12 basis, or shape, functions (see Appendix A.0.1),
since only their support overlaps the given patch. If a triangle is irregular, i.e., one of its vertices
has valence other than 6 the resulting patch is not a quartic box spline. Arbitrary parameter
locations may nevertheless be treated simply by the method described in the next section.

4.4 Function Evaluation for Arbitrary Parameter Values
In this section we discuss the evaluation of function values and derivatives for Loop subdivision
surfaces at arbitrary parameter locations. These function evaluations arise during the compu-
tation of element stiffness and force arrays by numerical quadrature, Equation (45). Despite
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early attempts [12], the proper parameterization of subdivision surfaces has been until recently
an unsolved problem in the vicinity of irregular vertices. Stam [39, 38] presented an elegant
solution to this problem based on the eigendecomposition of the subdivision matrix.

A convenient local parameterization of the limit surface may be obtained as follows. For
each triangle in the control mesh we choose (θ1, θ2) as two of its barycentric coordinates within
their natural range

T = {(θ1, θ2), s. t. θα ∈ [0, 1]} (67)

The triangle T in the (θ1, θ2)-plane may be regarded as a master or standard element domain. It
should be emphasized that this parameterization is defined locally for each element in the mesh.
The entire discussion of parameterization and function evaluation may therefore be couched in
local terms.

Consequently we proceed to consider a generic element in the mesh and introduce a local
numbering of the nodes lying in its immediate 1-neighborhood. For regular patches such as
depicted in Figure 9, Loop’s scheme leads to classical quartic box splines. Therefore, the local
parameterization of the limit surface may be expressed in terms of box-spline shape functions,
with the result:

x(θ1, θ2) =
12
∑

I=1

N I(θ1, θ2)xI (68)

where now the label I refers to the local numbering of the nodes. The precise form of the shape
functions N I(θ1, θ2) is given in Appendix A.0.1. The surface within the shaded triangle in Fig-
ure 9 is controlled by the 12 local control vertices. In contrast to Hermitian interpolation, the
surface is solely controlled by the position of these control vertices, and first- or second-order
derivatives at the nodes are not utilized. The image of the standard domain T under the embed-
ding (68) constitutes the geometric domain of the element under consideration within the limit
surface. The embedding (68) may thus be regarded as a conventional isoparametric mapping
from the standard domain T onto Ω, with (θ1, θ2) playing the role of natural coordinates.

The parameterization in Equation 68 may also be used for the displacement field. Locally
one then has

uh(θ
1, θ2) =

12
∑

I=1

N I(θ1, θ2)uI (69)

For function evaluation on irregular patches the mesh has to be subdivided until the parameter
value of interest is interior to a regular patch. At that point the regular box-spline parameter-
ization applies once again. It should be noted that the refinement is performed for parameter
evaluation only. For simplicity we assume that irregular patches have one irregular vertex only.
This restriction can always be met for arbitrary initial meshes through one step of subdivision,
which has the effect of separating all irregular vertices.

Figure 10 illustrates the basic idea for arbitrary parameter evaluation. It shows an irregular
patch (center) with a single vertex of valence 7. After one level of subdivision this patch is
divided into four patches, three of which are regular. If the desired parameter value lies within
those patches we may immediately evaluate the surface by using the canonical regular-patch
evaluation routine. If our desired parameter location lies within the fourth sub-patch, we must
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Figure 11: Refinement in the parameter space.

repeatedly subdivide until it falls within a regular patch. This can be achieved for any parameter
value away from the irregular vertex. As shown in Figure 10, after one subdivision step the
triangles marked one, two, and three are regular patches. The action of the subdivision operator
for this entire neighborhood can again be described by a matrix:

X1 = AX0 (70)

The matrix A now has dimension (N + 12, N + 6) and its entries can be derived from the
subdivision rules as presented in Section 4.2. For the proposed shell element with one-point
quadrature at the barycenter of the element, a single subdivision step is sufficient, since the
sampling point (center of the initial patch) lies in sub-patch 2. We define 12 selection vectors
P I , I = 1, . . . , 12 of dimension (N + 12) which extract the 12 box-spline control points for
sub-patch 2 from the N + 12 points of the refined mesh. The entries of P I are zeros and one
depending on the indices of the initial and refined meshes. To evaluate the function values in
the three triangles with the box-spline shape functions NI , a coordinate transformation must
be performed. The relation between the coordinates (θ1, θ2) of the original triangles and the
coordinates (θ̃1, θ̃2) of the refined triangles can be established from the refinement pattern in
Figure 11. For the center of sub-patch 2 we have the following relation:

Triangle 2: θ̃1 = 1− 2θ1 θ̃2 = 1− 2θ2 (71)

The function values and derivatives for sub-patch 2 can now be evaluated using the interpolation
rule:

x(θ1, θ2) =
12
∑

I=1

N I(θ̃1, θ̃2)P IAX0 (72)

Differentiation of the above equation yields the partial derivatives of x at the desired location.
In these calculations, the jacobian matrix of the simple mapping (72) between the coordinates
(θ1, θ2) and (θ̃1, θ̃2) has to be included. The result is:

x,α (θ1, θ2) = −2
12
∑

I=1

N I ,α (θ̃1, θ̃2)P IAX0 ≡ aα(θ
1, θ2) (73)
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Figure 12: Boundary conditions.

The jacobian of the embedding required in the quadrature rule (45) can in turn be computed
directly from aα through (7). Second-order derivatives such as required for the computation of
bending strains follow simply by direct differentiation of the interpolation rule (73).

The evaluation procedure just described is a simplified version of the scheme presented by
Stam [38] for function evaluation at arbitrary parameter values. Since we are only interested
in a one-point quadrature rule, a single subdivision step is sufficient. For other rules one may
need to subdivide further. Stam describes the general case in which the eigendecomposition of
A is exploited to perform the implied subdivision steps through suitable powers of A in the
eigenbasis, a simple and efficient procedure.

4.5 Dirichlet Boundary Conditions
Due to the local support of the subdivision scheme, the boundary displacements are influenced
only by the nodal positions in the 1-neighboorhood of the boundary, i. e., the first layer of ver-
tices inside the domain as well as a collection of artificial or ‘ghost’ vertices just outside the
domain. For example, for built-in boundary conditions the displacements of the nodes inside,
outside, and on the boundary must be zero (see Figure 12). The deformation of the bound-
ary computed with the limit formula as described in Section 4.3 shows that this results in zero
displacements and in fixed tangents. Other boundary conditions can be accommodated in a
similar way (see Figure 12). The enforcement of prescribed boundary displacements is equally
straightforward. General displacement boundary conditions may be formulated with the aid of
a local reference frame defined by the surface normal and the tangent to the boundary of the
shell. The prescribed displacement boundary conditions may be regarded as linear contraints
on the displacement field and treated accordingly during the solution process. Such linear con-
straints may be enforced by a variety of methods [11]. In all the calculations reported here, the
displacement boundary conditions are enforced by the penalty method, with a penalty stiffness
equal to 100 times the maximum diagonal component of the stiffness matrix.
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4.6 Implementation of Subdivision-Based Shell Elements
We close this section with selected remarks on matters of implementation. The implementation
of the element requires a few data structures in addition those typical of the conventional finite
element method. For example, tables of element adjacencies are needed for the computation
of element arrays. In our implementation, we use a Triangle C-structure which stores the
following information for each element of the mesh:

typedef struct _T {
/* pointer to the element vertices */
/* pointer to the neighbor triangles */
/* array of pointers to the vertices in the 1-neighborhood */
/* number of nodes in the 1-neighborhood */
/* information about the boundary conditions of the edges */

} Triangle;

The solution process consists of the following steps:

1. Subdivide the initial mesh once in order to separate the irregular vertices (the initial mesh
could include triangles with more than one irregular vertex— in order to limit the number
of possible mesh patterns during the parameter evaluation, we refine the mesh once so that
each triangle has at most one irregular vertex).

2. Generate artificial nodes and elements at the boundaries (see Section 4.2).

3. Find the 1-neighborhood of each element and gather the local nodes in accordance with
the local numbering convention.

4. Create local coordinate systems at the nodes if necessary. For the creation of the local
coordinate systems, we employ the limit formula of Equation (65) for the shell normal.

5. Compute and assemble the element stiffness matrices and force arrays.

6. Introduce displacement boundary condition constraints (see Section 4.5).

7. Solve the system of equations.

8. Compute the limit positions of the nodes, Equation (60).

The elements under consideration here have three nodes and three displacement degrees of
freedom per node. We use one-point quadrature with the sole quadrature point in the rule
located at the barycenter of the element, i. e., at θ1G = 1/3 and θ2

G = 1/3. The corresponding
weight is w = 1/2, which, evidently, is the area of the standard triangle T .

In sum, the preceding developments lead to the definition of a class of fully conforming
‘C1’ triangular elements containing three nodes and one quadrature point. This combination of
attributes, namely, the low order of interpolation and quadrature required, render the element
particularly attractive from the standpoint of computational efficiency. As mentioned earlier,
subdivision surfaces may also be used to define four-node square shell elements, but this exten-
sion of the method will not be pursued here.
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5 Examples
We proceed to establish the convergence characteristics of the method by running the obstacle
course of test cases proposed by Belytschko et al. [7]. The shells in these tests cases take simple
spherical or cylindrical shapes which can be readily described analytically. A preliminary step
in the calculations is to approximate the exact surface of the shell by a subdivision surface.
Several methods of approximation are possible, including:

1. Least-squares approximation of the exact surface by the limit surface;

2. Placement of the control-mesh nodes on the exact surface;

and others. However, theoretical considerations and our own numerical tests show that the
error incurred in the approximation of the shell geometry is of higher order than the finite-
element error, and consequently both methods of approximation result in the same convergence
rates asymptotically. It should also be noted that the question of geometrical approximation
is rendered moot within an integrated computer-aided geometrical design (CAGD) — finite-
element analysis framework. In this environment, the subdivision surface generated by the
CAGD module becomes the true shell surface to be analyzed by the finite-element analysis
module.

We note for further reference that a strictly C1 finite-element method for Kirchhoff-Love
shell theory containing the complete set of third-order polynomials within its interpolation sat-
isfies the error bound [13]:

∥uh − u∥2,Ω ≤
C

NP
|u|3,Ω (74)

where u is the exact solution, uh is the finite-element solution, C is a constant, NP is the
number of nodes in the mesh, ∥ · ∥2,Ω is the standard norm over H2(Ω;R3), or ‘energy norm’,
and | · |3,Ω is the standard semi-norm over H3(Ω;R3).

The central question to be ascertained now is whether the method developed in the foregoing
exhibits the optimal convergence rate implied by the bound (74). All the calculations described
subsequently are carried out with one-point quadrature. The successive mesh refinements con-
sidered in convergence studies are obtained by regular refinement.

We additionally compare the performance of the proposed approach with that of two other
shell elements:

ASM : The assumed-strain four-noded shell element of Simo et al. [35].

DKT-CST : A flat 3-node element with no membrane/bending coupling [17]. In this element
the discrete Kirchhoff triangle (DKT) formulation of Batoz [5] is utilized for the bending
response, and standard constant strain interpolation is used for the membrane response.
The resulting element has six degrees of freedom per node.

5.1 Rectangular Plate
As a first example, we consider the simple case of a square plate under uniform loading p = 1,
Fig. 13. The length of the plate is L = 100 and the thickness is h = 1. These dimensions place
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L
L

Geometry: L = 100.0
h = 1.0

Material properties: E = 1.0 · 107
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Figure 13: Definition of the plate test problem and a typical mesh used in the calculations.

Figure 14: Calculated deformed shapes for the clamped and simply-supported plates (deflec-
tions scaled differently in both cases).

the plate well within the scope of Kirchhoff’s theory. The Young’s modulus is E = 107 and
the Poisson’s ratio is ν = 0. In order to test the treatment of displacement boundary conditions
described in Section 4.5, we analyze both a simply-supported and a clamped plate. The entire
plate is discretized into finite elements with no account taken of the symmetry of the plate. A
typical mesh used in the calculations is shown in Fig. 13. The artificial or ghost nodes used to
enforce the boundary conditions are not shown in the figure.

The computed limit surfaces of the simply-supported and clamped plates following defor-
mation are shown in Figure 14. The high degree of smoothness of these deflected shapes is
noteworthy. An appealing feature of the problem under consideration is that it is amenable to
an exact analytical solution. For instance, the maximum displacement at the center of the plate
is found to be: umax ≈ 0.487 for the simply-supported plate; and umax ≈ 0.151 for the clamped
plate [41]. It therefore follows that the solution error can be computed exactly for this prob-
lem. The computed maximum-displacement and energy-norm errors are shown in Figure 15
as a function of the number of degrees of freedom. In all cases, the optimal convergence rate
O(NP−1) is attained in the energy norm, which attests to the good convergence properties of
the method. These results, and those presented subsequently, also demonstrate the sufficiency
of the one-point quadrature rule.
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Figure 15: Convergence of the energy and maximum-displacement errors for the simply-
supported and clamped plate problems.
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Material properties: E = 4.32 · 108

ν = 0.0

Gravity load p = 90.0

Figure 16: Definition of Scordelis-Lo problem.

5.2 Scordelis-Lo Roof
The Scordelis-Lo Roof is a membrane-stress dominated problem and, as such, it provides a
useful test of the ability of the finite-element element method to represent complex states of
membrane strain. The problem concerns an open cylindrical shell loaded by gravity forces,
Figure 16. In our calculations, the length of the cylinder is L = 50; its radius is R = 25; the
angle subtended by the roof is φ = 80deg; the thickness is h = 0.25; the Young’s modulus is
E = 4.32 · 108; and the Poisson’s ratio is ν = 0.

The undeformed control mesh and the deformed limit surface are shown in Figure 5.2. A
convergence plot for the maximum displacement is shown in Figure 18. The displacements are
normalized by the value 0.3024 as given in [7]. The excellent convergence characteristics of the
method are evident from the figure. In particular, the subdivision element outperforms both the
assumed-strain and the DKT elements.
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Figure 17: Scordelis-Lo Roof: typical control mesh; deformed limit surface.
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Figure 18: Displacement-convergence plot for Scordelis-Lo Roof.
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Concentrated forces: F = 1.0

Figure 19: Definition of the pinched-cylinder problem.

Figure 20: Pinched-cylinder problem: typical control mesh; deformed limit surface.

5.3 Pinched Cylinder
The pinched-cylinder problem tests the method’s ability to deal with inextensional bending
modes and complex membrane states. The problem concerns a cylindrical shell pinched under
the action of two diametrically opposite unit loads located within the middle section of the
shell. We consider two cases: free-end boundary conditions; and ends constrained by two
rigid diaphragms. The length of the cylinder is L = 600; the radius is R = 300; the thickness is
h = 3; the Young’s modulus is E = 3×106; and the Poisson’s ratio is ν = 0.3. A control-mesh
node is placed at the point of application of the loads. It is interesting to note, however, that,
owing to the nonlocal character of the shape functions, the point load is spread over several
nodes. This is in contrast to other methods, e. g., those based on Hermitian interpolation. It
should be carefully noted that the shape functions developed here possess the requisite partition-
of-unity property and, in consequence, the resultant of all nodal forces exactly matches the
applied load.
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Figure 21: Displacement convergence plots for pinched-cylinder problem: rigid diaphragm
case; free-end case.

The computed deformed limit surface is shown in Figure 20. Here again, the high degree
of smoothness of the deformed surface, which attests to the conforming nature of the method,
is noteworthy. Displacement-convergence results are shown in Figure 21. In the diaphragm
case, we monitor the displacements under the loads, which are normalized by the analytical
solution of 1.82488×10−5. The excellent convergence properties of the method are evident from
the figure. As may be seen, the subdivision element converges faster than both the assumed-
strain and the DKT elements. The analytical solution for the free-end case has been given by
Timoshenko [41]. Timoshenko’s solution gives a value of 4.520 × 10−4 for the displacements
under the loads, and a value of 4.156 × 10−4 for the change in diameter at the free ends. The
convergence of this latter quantity is shown Figure 21. Here again, the robust convergence
characteristics of the numerical solution is noteworthy.

5.4 Hemispherical Shell
The case of a spherical shell provides an example of a surface which cannot be triangulated
without the inclusion of irregular nodes, or nodes of valence different from 6. Under these con-
ditions, a naive implementation of a box-spline-based finite-element method necessarily breaks
down, which illustrates the need for the more general treatment developed here. We consider a
shell of hemispherical shape deforming under the action of four point loads acting on its edge.
The radius of the hemisphere is R = 10; the thickness is h = 0.04; the Young’s modulus is
E = 6.825 · 107; and the Poisson’s ratio is ν = 0.3. The edge of the shell is free. The applied
loads have a magnitude F = 2 and define two pairs of diametrically opposite loads alternating
in sign at 90deg (see Figure 22). A typical control mesh and the corresponding deformed limit
surface are shown in Figure 23. The presence of irregular nodes in the control mesh should be
carefully noted. The convergence of the radial displacement under the applied loads is shown
in Figure 24. The displacements are normalized by the exact solution 0.0924 as given by [7].
The hemispherical shell is a standard test for assessing an element’s ability to represent inex-
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Figure 22: Definition of the pinched-hemisphere problem.

Figure 23: Pinched-hemisphere problem: control mesh; deformed limit surface.
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tensional deformations. Critical to the performance of the element is its ability to bend without
developing parasitic membrane strains. Accordingly, the flat DKT element with uncoupled
membrane and bending stiffness performs particularly well in the pinched-hemisphere shell
problem. However, a careful examination of Figure 24 reveals that the subdivision element at-
tains convergence faster than even the DKT element. The excellent convergence characteristics
of the method are again evident from the figure.

6 Summary and conclusions
We have presented a new paradigm for thin-shell finite-element analysis based on the use of
subdivision surfaces for: i) describing the geometry of the shell in its undeformed configuration,
and ii) generating smooth interpolated displacement fields possessing bounded energy within
the strict framework of the Kirchhoff-Love theory of thin shells. Several salient attributes of the
proposed interpolation scheme bear emphasis:

1. The undeformed and deformed surfaces of the shell, or equivalently the displacement field
thereof, follow by the recursive application of local subdivision rules to nodal data defined
on a control triangulation of the surface. The particular subdivision strategy adopted
here is Loop’s scheme. Whether directly at regular nodes of valency 6, or following an
appropriate number of subdivision steps in the case of irregular nodes, the limit surface
can be described locally by quartic box splines. Subdivision rules may also be defined for
square meshes. The subdivision rules may also be generalized to account for creases and
displacement boundary conditions.

2. The limit surfaces obtained by subdivision, and the displacement fields they support, are
C2 except at isolated extraordinary points. The displacement field is guaranteed to be H2,
i. e., to be square-summable and to have first and second square-summable derivatives.
In consequence, the interpolated displacement fields have a finite Kirchhoff-Love energy.
In the parlance of the finite-element method, the proposed interpolation scheme is strictly
C1 and therefore meets the convergence requirements of the displacement finite-element
method.

3. The triangles in the control mesh induce subregions on the limit surface which may be
regarded as bona fide finite elements. In particular, the energy–and all other extensive
properties–of the shell may be computed as a sum of integrals extended to the domains
of the elements. These element integrals may conveniently be evaluated by numeri-
cal quadrature without compromising the order of convergence of the method. A one-
point quadrature rule is sufficient for the computation of element integrals resulting from
Loop’s subdivision scheme.

4. The displacement field of the shell is interpolated from nodal displacements only. In par-
ticular, no nodal rotations are used in the interpolation. However, the interpolation scheme
developed here differs from conventional C0 finite-element interpolation in a crucial re-
spect: the displacement field over an element depends on the displacements at the three
nodes of the element and on the displacements of the 1-ring of nodes connected to the
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element. In this sense, the interpolation rule is nonlocal. However, the use of subdivision
surfaces ensures that all the local displacement fields defined over overlapping patches
combine conformingly to define one single limit surface.

In sum, subdivision surfaces enable the finite-element analysis of thin shells within the
strict confines of Kirchhoff-Love theory while meeting all the convergence requirements of the
displacement finite-element method. In particular the ability to couch the analysis within the
framework of Kirchhoff-Love theory entirely sidesteps the difficulties associated with the use of
C0 methods in the limit of very thin shells. In a particularly pleasing way, subdivision surfaces
enable the return to the most basic–and fundamental–of finite element approaches, namely,
constrained energy minimization over a suitable subspace of interpolated displacement fields,
or Rayleigh-Ritz approximation. Finite-element methods formulated in accordance with this
prescription satisfy the orthogonality property, i. e., the error function is orthogonal to the space
of finite-element interpolants; and possess the best-approximation property, i. e., the energy
norm of the error is minimized by the finite-element solution. These properties render the basic
finite-element method exceedingly robust and account for much of its success. Our numerical
experiments show that the approach proposed here does indeed lead to the optimal convergence
rate predicted by finite-element theory.

Another key advantage afforded by the approach developed here is that subdivision surfaces
provide a common representational paradigm for both solid modeling and shell analysis, with
the attendant unification of traditionally heterogeneous software tools. By virtue of this unifica-
tion, surface geometries generated by a computer-aided geometry design (CAGD) module can
be directly utilized by the shell-analysis module without the need for any intervening geomet-
rical manipulation. As a consequence, high-level algorithms developed in the field of computer
aided geometric design can be integrated simply into the shell analysis software.

In closing, a number of possible extensions of the theory are worth mentioning. Firstly,
recursive subdivision provides an effective basis for mesh adaption. By retaining the hierarchy
of finite-element representations generated by subdivision, the application of multiresolution
methods and related techniques, such as wavelets, becomes straightforward. Indeed, the appli-
cation of wavelet methods to the description of complex and intricate geometries has already
been extensively pursued within the field of computer graphics [48]. Finally, the extension
of the proposed approach to the nonlinear range appears straightforward. In this particular
context, the sole use of nodal displacements in the interpolation is expected to simplify the so-
lution procedure by eliminating the need for introducing complex schemes for the nonsingular
parametrization of the shell director.
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A Appendix
A.0.1 Regular Patches

For regular patches the shape functions are given by the 12 box-spline basis functions [39]. The
local numbering of the nodes adopted here is as in Figure 9.

N1 =
1

12
(u4 + 2u3v)

N2 =
1

12
(u4 + 2u3w)

N3 =
1

12
(u4 + 2u3w + 6u3v + 6u2vw + 12u2v2 + 6uv2w + 6uv3 + 2v3w + v4)

N4 =
1

12
(6u4 + 24u3w + 24u2w2 + 8uw3 + w4 + 24u3v + 60u2vw + 36uvw2

+ 6vw3 + 24u2v2 + 36uv2w + 12v2w2 + 8uv3 + 6v3w + v4)

N5 =
1

12
(u4 + 6u3w + 12u2w2 + 6uw3 + w4 + 2u3v + 6u2vw + 6uvw2 + 2vw3)

N6 =
1

12
(2uv3 + v4)

N7 =
1

12
(u4 + 6u3w + 12u2w2 + 6uw3 + w4 + 8u3v + 36u2vw + 36uvw2 + 8vw3

+ 24u2v2 + 60uv2w + 24v2w2 + 24uv3 + 24v3w + 6v4)

N8 =
1

12
(u4 + 8u3w + 24u2w2 + 24uw3 + 6w4 + 6u3v + 36u2vw + 60uvw2

+ 24vw3 + 12u2v2 + 36uv2w + 24v2w2 + 6uv3 + 8v3w + v4)

N9 =
1

12
(2uw3 + w4)

N10 =
1

12
(2v3w + v4)

N11 =
1

12
(2uw3 + w4 + 6uvw2 + 6vw3 + 6uv2w + 12v2w2 + 2uv3 + 6v3w + v4)

N12 =
1

12
(w4 + 2vw3) (75)

where the barycentric coordinates (u, v, w) are subject to the constraint:

u + v + w = 1 (76)

The local curvilinear coordinates (θ1, θ2) for the element may be identified with the barycentric
coordinates (v, w).

A.0.2 Irregular Patches

As discussed in Section 4.4, a closed-form representation for the shape functions is not available
at irregular vertices. The shell surface within each element is, however, completely described
by the nodal positions of the element and its 1-ring. For the one-point quadrature rule used
in calculations, the regular patch configuration is recovered after the application of one single
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subdivision step. In the following we give a more general version of the function evaluation
scheme for arbitrary parameter values. The number of subdivision steps required and the at-
tendant coordinate transformations can be computed by the following algorithm due to Stam
[39].

/* determine the necessary number of subdivisions */
u = v+w;
k = -log10(u)/log10(2.0);
k = ceil(k);
pow2 = pow(2.0, (double)(k-1));

/* determine in which domain (v,w) lies */
v *= pow2; w *= pow2;

if (v > 0.5) {
v = 2.0*v-1.0; w = 2.0*w;
whpa = 1;

} else if (w > 0.5) {
v = 2.0*v; w = 2.0*w-1.0;
whpa = 3;

} else {
v = 1.0 - 2.0*v; w = 1.0-2.0*w;
whpa = 2;

}

The function value at any parameter value is given by:

x(θ1, θ2) =
NP
∑

I=1

NI(θ̃1, θ̃2)P IA
kX0 (77)

which generalizes Equation (72). Here again, the vectors P I extract the control nodes of the
box-spline patch. The variable whpa in the above code gives the number of the subpatch, which
contains the coordinates (v, w), and the variable k the power of the matrix A. For Loop’s
scheme, the subdivision matrix A has the following form:

A =

(

S11 0
S21 S22

)

(78)

with

S11 =
1

8

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

8− 8nw 8w 8w 8w . . . 8w
3 3 1 0 . . . 1
3 1 3 1 . . . 0
... ... ... ... . . . ...
3 1 0 . . . 1 3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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S21 =
1

16

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 6 0 0 · · · 0 0 6
1 10 1 0 · · · 0 0 1
2 6 6 0 · · · 0 0 0
1 1 0 0 · · · 0 1 10
2 0 0 0 · · · 0 6 6
0 6 0 0 · · · 0 0 2
0 6 0 0 · · · 0 0 0
0 6 2 0 · · · 0 0 0
0 2 0 0 · · · 0 0 6
0 0 0 0 · · · 0 0 6
0 0 0 0 · · · 0 2 6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

S22 =
1

16

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 0 0 0 0
1 1 1 0 0
0 0 2 0 0
1 0 0 1 1
0 0 0 0 2
6 2 0 0 0
2 6 2 0 0
0 2 6 0 0
6 0 0 2 0
2 0 0 6 2
0 0 0 2 6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

It should be noted that the dimensions of the matrices S11 and S21 depend on the valence of the
irregular vertex.

A.0.3 Membrane and Bending Strain Matrices

The membrane and bending-strain matrices take the form:

M I =

⎡

⎢

⎣

N I ,1 a1 · e1 N I ,1 a1 · e2 N I ,1 a1 · e3

N I ,2 a2 · e1 N I ,2 a2 · e2 N I ,2 a2 · e3

(N I ,2 a1 + N I ,1 a2) · e1 (N I ,2 a1 + N I ,1 a2) · e2 (N I ,2 a1 + N I ,1 a2) · e3

⎤

⎥

⎦
(79)

and

BI =

⎡

⎢

⎣

BI
1 · e1 BI

1 · e2 BI
1 · e3

BI
2 · e1 BI

2 · e2 BI
2 · e3

BI
3 · e1 BI

3 · e2 BI
3 · e3

⎤

⎥

⎦ (80)

respectively. In the above expressions, (e1, e2, e3) are the basis vectors of an orthonormal-
coordinate reference frame, and

BI
1 = −N I ,11 a3 +

1√
a
[N I ,1 a1,1 × a2 + N I ,2 a1 × a1,1

+ a3 · a1,1(N
I ,1 a2 × a3 + N I ,2 a3 × a3)]

BI
2 = −N I ,22 a3 +

1√
a
[N I ,1 a2,2 × a2 + N I ,2 a1 × a2,2

+ a3 · a2,2(N
I ,1 a2 × a3 + N I ,2 a3 × a3)]

BI
3 = −N I ,12 a3 +

1√
a
[N I ,1 a1,2 × a2 + N I ,2 a1 × a1,2

+ a3 · a1,2(N
I ,1 a2 × a3 + N I ,2 a3 × a3)]
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[48] D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution mesh editing. In
Computer Graphics (SIGGRAPH ’97 Proceedings), 1997.


